

Oct. 2024

5th International Symposium on Probabilistic Methodologies for Nuclear Applications

UC 02

Stress intensity factor solutions for circumferential and axial semi-elliptical surface cracks with large aspect ratios in pipes

The Nuclear Regulation Authority Japan Kisaburo AZUMA

Introduction

- Structural integrity analysis is essential to assessing whether a component can safely withstand the service conditions throughout its operation time.
- A surface flaw detected by non-destructive testing is often modeled as a semi-elliptical crack in various codes and standards.

- Crack growth rates at the surface and deepest points can be predicted by the stress intensity factor K_{I} .
- The stress intensity factor K_{I} depends on the applied stress and geometrical parameters.

Method of K_{I} determination (ASME Section XI, A-3000)*

* ASME boiler and pressure vessel code Section XI, Rules for Inservice Inspection of Nuclear Power Plant Components, 2023. 2

Crack with large aspect ratio ($a/\ell > 0.5$)

- Stress corrosion cracking (SCC) often produces deep cracks whose depth a can be deeper than its half-crack length c (cracks with large aspect ratios).
- By the ASME Code Section XI, a deep surface crack of this type is conservatively modeled as a larger semi-circular crack with the same depth ($a/\ell = 0.5$).

Although enlarging crack size seems to be conservative for flaw evaluation, the rate of increase in $K_{\rm I}$ (or $G_{\rm i}$) is unclear in this procedure.

The objective of this study is to investigate how enlarging crack size affects the stress intensity factor for a crack with a large aspect ratio.

Finite element models

We referred to finite element K_{I} solutions for axial and circumferential cracks with $a/\ell > 0.5$ developed by Li et al.*

* Li, Y., et al, ASME Journal of Pressure Vessel Technology, 2017; 139(2): 021202. 5

FEA solutions (G_i values)

Care should be taken when $a/\ell > 0.5$: $G_1 - G_4$ values might be highest at an intermediate point (maximum point) rather than at the surface or deepest point.

All the FEA solutions at surface, maximum, and deepest points were fitted to the following equation.

- Closed-form G_i solutions*

$$G_{i} = k_{00} + k_{10} \left(\frac{a}{t}\right) + k_{01} \left(\frac{a}{\ell}\right) + k_{20} \left(\frac{a}{t}\right)^{2} + k_{02} \left(\frac{a}{\ell}\right)^{2} + k_{11} \left(\frac{a}{t}\right) \left(\frac{a}{\ell}\right)$$
$$+ k_{30} \left(\frac{a}{t}\right)^{3} + k_{03} \left(\frac{a}{\ell}\right)^{3} + k_{12} \left(\frac{a}{t}\right) \left(\frac{a}{\ell}\right)^{2} + k_{21} \left(\frac{a}{t}\right)^{2} \left(\frac{a}{\ell}\right)$$
$$G_{i}: \text{ Influence coefficients} \qquad k_{ii}: \text{ Fitting parameter}$$

The fitting results of axial cracks are demonstrated in the following.

* Azuma, K., et al., ASME. J. Pressure Vessel Technol. December 2022; 144(6): 061303. 7

Curve fitting for G_i solutions

G_1 solutions for an axial crack

Small crack in thick pipe			Large crack in thick pipe			Small	crack in	thin pipe	Large crack in thin pipe		
	Fitting	a/t = 0.01		Fitting	a/t = 0.8		Fitting	a/t = 0.01	- · -	Fitting	a/t = 0.8
0	FEA	R/t = 2	\$	FEA	R/t = 2		FEA	R/t = 80	۵	FEA	R/t = 80

- The maximum relative fitting error is 8% for the surface point.
- The effect of a/l is the most significant among the geometric parameters.

Fitting parameters

Fitting coefficients for the closed-form solution at the surface point for an axial crack

	$R_{\rm i}/t$	k_{00}	k_{10}	<i>k</i> ₀₁	k_{20}	k_{02}	<i>k</i> ₁₁	k_{30}	k_{03}	<i>k</i> ₁₂	k_{21}
	2	0.6617	-0.0830	1.1449	0.5526	-0.2836	-0.2494	-0.0603	0.0293	0.0568	-0.1003
	5	0.6516	0.0514	1.1727	0.4506	-0.3020	-0.2307	-0.0464	0.0323	0.0527	-0.1024
G	10	0.6429	0.0903	1.1921	0.4776	-0.3126	-0.2355	-0.0813	0.0337	0.0538	-0.1048
\mathbf{U}_0	20	0.6524	0.1352	1.1665	0.4154	-0.3001	-0.2333	-0.0451	0.0321	0.0509	-0.0958
	40	0.6629	0.1361	1.1408	0.4234	-0.2871	-0.2281	-0.0341	0.0303	0.0503	-0.1018
	80	0.6491	0.1437	1.1928	0.4040	-0.3203	-0.2373	-0.0251	0.0355	0.0519	-0.0970
	2	0 1407	-0.0166	0 1377	0 1569	-0.0659	-0.0597	-0 0264	0.0081	0.0151	-0.0309
	5	0.1294	0.0100	0.1577	0.1002	-0.0807	-0.0826	-0.0503	0.0001	0.0131	-0.0021
C	5 10	0.1274	0.0302	0.1025	0.1012	-0.0709	-0.0795	-0 0747	0.0105	0.0144	-0.0093
G_1	20	0.1392	0.0410	0.1437	0.1499	-0.0692	-0.0788	-0.0766	0.0090	0.0147	-0.0087
	40	0.1332	0.0512	0.1314	0.1468	-0.0639	-0.0798	-0.0750	0.0080	0.0143	-0.0082
	80	0.1388	0.0512	0.1311	0.1407	-0.0742	-0.0820	-0.0707	0.0007	0.0147	-0.0071
	00	0.1500	0.0522	0.1175	0.1107	0.0712	0.0020	0.0707	0.0097	0.0117	0.0071
	2	0.0616	-0.0072	0.0335	0.0872	-0.0250	-0.0281	-0.0260	0.0036	0.0072	-0.0156
	5	0.0578	0.0210	0.0424	0.0623	-0.0305	-0.0359	-0.0349	0.0045	0.0069	-0.0052
G	10	0.0602	0.0181	0.0372	0.0787	-0.0275	-0.0362	-0.0470	0.0040	0.0072	-0.0065
\mathbf{U}_2	20	0.0613	0.0222	0.0345	0.0755	-0.0262	-0.0365	-0.0468	0.0039	0.0069	-0.0052
	40	0.0630	0.0240	0.0300	0.0750	-0.0239	-0.0368	-0.0464	0.0035	0.0068	-0.0051
	80	0.0610	0.0241	0.0375	0.0723	-0.0287	-0.0376	-0.0444	0.0043	0.0070	-0.0047
	2	0.0355	0.0036	0 0097	0.0544	-0.0114	-0.0164	-0.0208	0.0018	0.0042	-0.0087
	5	0.0336	0.0117	0.0097	0.0395	-0.0114	-0.0104	-0.0200	0.0018	0.0042	-0.0037
C	5 10	0.0349	0.0117	0.0142	0.0393	-0.0142	-0.0209	-0.0336	0.0025	0.0040	-0.0032
<i>G</i> ₃	20	0.0345	0.0105	0.0099	0.0461	-0.0119	-0.0212	-0.0337	0.0020	0.0039	-0.0022
	40	0.0365	0.0131	0.0073	0.0460	-0.0106	-0.0212	-0.0338	0.0017	0.0039	-0.0021
	80	0.0354	0.0140	0.0116	0.0445	-0.0134	-0.0218	-0.0326	0.0022	0.0040	-0.0019
	00	0.0551	0.0110	0.0110	0.0115	0.0151	0.0210	0.0520	0.0022	0.0010	0.0017
	2	0.0234	-0.0020	0.0022	0.0371	-0.0058	-0.0108	-0.0166	0.0010	0.0027	-0.0054
	5	0.0222	0.0077	0.0049	0.0271	-0.0076	-0.0134	-0.0201	0.0013	0.0026	-0.0015
G_{A}	10	0.0230	0.0070	0.0032	0.0328	-0.0066	-0.0137	-0.0255	0.0011	0.0026	-0.0015
- 4	20	0.0234	0.0087	0.0021	0.0313	-0.0061	-0.0139	-0.0258	0.0011	0.0025	-0.0008
	40	0.0240	0.0093	0.0005	0.0312	-0.0052	-0.0140	-0.0260	0.0010	0.0025	-0.0007
	80	0.0233	0.0092	0.0032	0.0304	-0.0070	-0.0142	-0.0253	0.0012	0.0025	-0.0006

9

- Enlarging crack size always increases in G_i values.
- The rate of increase highly depends on the load condition, the evaluation point, and the original crack aspect ratio.

- Enlarging crack size always results in an increase in G_i values.
- The rate of increase highly depends on the load condition, the evaluation point, and the original crack aspect ratio.

We developed the closed-form G_0 - G_4 solutions for surface cracks with $a/\ell \ge 0.5$ in pipes.

- The closed-form equations for axial and circumferential cracks are sufficiently precise (The max. error is 8% at the surface point).
- G_i values depend mainly on aspect ratio a/ℓ rather than crack depth ratio a/t and radius/thickness ratio R_i/t .
- Enlarging cracks with $a/\ell \ge 0.5$ always increases G_i values; the rate of increase depends on the load condition, the evaluation point, and the original crack aspect ratio.

The degree of conservativeness varies a lot. This might introduce uncertainties in probabilistic analysis.