

Application of Pipe Rupture Exclusion Methodology using PFM code for LBLOCA Reclassification

Chapter 01 Introduction

Chapter 02 Project Overview

Chapter 03

Methodology Overview

Chapter 04

Next steps and Conclusion

- Loss of Coolant Accident (LOCA)
 - Postulated RCS pipe break resulting in loss of primary coolant
 - Most severe design basis accident
 - Depending on break size, classified as large break and small break LOCA
 - ✓ Maximum size : double-ended guillotine break (DEGB) of largest RCS pipe

History of LOCA Regulation in US

- 2010, Risk informed ECCS(final rule, but not applied)
- 2016, Change oxidation criteria, 10CFR50,46c(draft final rule, but not applied)

- Risk Informed ECCS Rule
 - Define max. size of DBA LOCA : TBS(Transition Break Size)
 - Breaks up to TBS : Use current analysis methods and assumptions
 - Breaks larger than TBS : Realistic analysis
 - \checkmark More realistic analysis methods and initial conditions
 - \checkmark No loss of offsite power or worst single failure
 - References
 - ✓ NUREG-1829, Estimating LOCA Frequencies Through the Elicitation Process, 2008
 - ✓ NUREG-1903, Seismic Considerations for the Transition Break Size, 2008
 - ✓ DG-1216, Plant-Specific Applicability of Transition Break Size Specified in 10CFR50.46a, 2010

LBB (Leak Before Break) Concept

- Before pipe break, fluid leakage occurs
- By monitoring fluid leakage, through wall cracks in pipes can be detected before pipe break, preventing catastrophic pipe failure

- \checkmark Pipe break occurs when cracks in pipe grow and exceed certain critical size
- ✓ Crack growth takes time. By detecting small cracks, reactor shutdown or pipe maintenance can be done before pipe break
- ✓ RCS coolant leakage is detected by plant leakage detection system

LBB Application

- Structural design
 - ✓ Eliminate dynamic forces associated with pipe break
 - ✓ Eliminate pipe whip restraints, jet barriers
- 10CFR50 App. A, GDC 4
 - ✓ Criterion 4 Environmental and dynamic effects design bases
 - $\checkmark~$ Revised in 1987 to allow LBB

However, dynamic effects associated with postulated pipe ruptures in nuclear power units may be excluded from the design basis when analyses reviewed and approved by the Commission demonstrate that the probability of fluid system piping rupture is extremely low under conditions consistent with the design basis for the piping.

OPR1000 and APR1400

- LBB applied to main pipes in primary loop from the initial structural design
- Pipe whip restraints not needed

02. Project Overview

-ND

- Need for reclassifying LOCAs and excluding DEGB from DBA
 - Emerging issues due to revision of regulatory requirements for <u>Safety Analysis</u>
 - \checkmark Consideration of impact on nuclear fuel relocation* and dispersal**
 - * When the RCS pressure is lowered due to the occurrence of <u>LBLOCA</u>, sintered pellet piece moves due to the pressure difference of inside and outside the fuel rod
 - ** The cladding is ruptured due to pressure difference of inside and outside the fuel rod and the sintered pellet pieces are lost
 - ✓ No problems within the upper limit of duty of operating NPP, but expected when duty increases
 - Reclassification of LOCA
 - ✓ Probability of double-ended guillotine break is extremely low
 - ✓ Divide current LBLOCA to LB and IBLOCA(Intermediate Break)
 - ✓ Change new LBLOCA to beyond design basis accident (DBA)
 - IBLOCA analysis methodology development
 - \checkmark Current LBLOCA methodology focuses on large break size (60~100% of DEGB)
 - $\checkmark~$ Develop IBLOCA analysis methodology focusing on intermediate break size

02. IBLOCA project

Overview

Goal	Redefine Design Basis LOCA as IBLOCA and Develop IBLOCA Analysis Best-estimate Methodology						
Phase	Phase 1(2022~2024) Develop Technology for LOCA Reclassification	>	Phase 2(2025~2026) Develop Preliminary IBLOCA Methodology and Uncertainty Evaluation Method		Phase 3(2027~2029) Preparation for IBLOCA Methodology Regulatory Review		
Major Activities	 Develop LOCA Reclassification Technology IBLOCA PIRT* Development and Integral Effect Test SPACE Code Improvement 		 Model Improvement Model Uncertainty Evaluation Method Preliminary IBLOCA Methodology Technical Basis for Eliminating DEGB from DBA 		 •IBLOCA Methodology Topical Report •Realistic Analysis of LBLOCA •SPACE Code QA •Improvement of Leakage Detection 		

02. IBLOCA project

Participating Organization

Organization	Activities	
KHNP CRI	Project management SPACE Code Configuration Control	
KAERI	IBLOCA PIRT Development, IET Experiment, Model Development	
KEPCO NF	IBLOCA Methodology Topical Report Development	
<u>Sejong University</u>	Develop Technology for LOCA Reclassification LBB and Break Probability	
Sentech	SPACE Code Improvement	
Chungnam University	SPACE 3D model improvement	

a the 03 Chapter Methodology **Overview**

03. Overview of rupture exclusion methodology

- Concepts of rupture exclusion are DG-1216 and Direct methodology
 - The DG-1216 methodology needs to analyze the design/operation difference between the U.S. and the domestic nuclear power plant
 - <u>The direct methodology</u> basically utilizes the results of DFM LBB evaluation, and the elicitation process is conducted through PFM evaluation and expert panel discussion on operational experience
- Probabilistic Fracture Mechanics Evaluation
 - Selection of welds subject to PFM analysis(RCS piping priority with LBB)
 - Evaluation of pipe rupture(probability, time lapse, etc) by PFM analysis
 - Expert panel discussion to determine the TBS draft

03. Application of PFM tools

2024 5th ISPMNA Oct. 7.-9., Tokyo

mainly xLPR code

- Developed by EPRI & NRC, using under KHNP-EPRI business cooperation
- Utilized 2.2 version(recently 2.3 version released)
- For evaluating PFM for domestic NPPs
- supplementary PRO-LOCA Code
 - Participation in the PARTRIDGE* program as a Korean consortium
 - * Probabilistic Analyses as a Regulatory Tool for Rick-Informed Decision GuidancE
 - No separate QA, but many same modules of xLPR
 - Utilized 7.1 version revised in Aug. 2022
 - For comparison with xLPR results, sensitivity analysis.

03. Preliminary evaluation results(1/6)

Benchmark analyses for PRO-LOCA utilization validation(vs. TLR Report)

CHNP

- RVON (WH 4-loop Reactor Vessel Outlet Nozzles DMWs) 10 Cases
- RVIN (WH 4-loop Reactor Vessel Inlet Nozzles DMWs) 1 Case

	Weld	Case No.	Crack Orientation	Crack Initiation Method	Crack Growth Mechanism	Objective
		1.1.0	Circumferential	PWSCC(DM1)	PWSCC	Assess the base likelihood of failure caused by PWSCC initiation and growth with no ISI, mitigation, or seismic effects
		1.1.1	Circumferential & Axial	Initial Flaw Density	PWSCC	Assess the sensitivity of the likelihood of failure due to whether the crack initiation process is modeled in the analysis
		1.1.2	Circumferential	PWSCC(DM1)	PWSCC	Assess the sensitivity of the likelihood of failure due to severe, yet plausible, WRS
		1.1.7	Circumferential	PWSCC(DM1)	PWSCC	Assess the sensitivity of the likelihood of failure due to the normal operating loads
	RVON	1.1.9	Circumferential	PWSCC(DM1)	PWSCC	Assess the impacts of MSIP on the likelihood of failure
		1.1.10	Circumferential	Initial Flaw Density	PWSCC	Assess the impacts of $\ensuremath{\textbf{ISI}}$ on the likelihood of failure
		1.1.11	Circumferential	Initial Flaw Density	PWSCC	Assess the impacts of ISI model parameter uncertainty(POD)
		1.1.14	Circumferential	Initial Flaw Density	PWSCC	Assess the impacts of hydrogen water chemistry on the likelihood of failure
		1.1.20	Circumferential	Initial Flaw Density	PWSCC	Assess the sensitivity of the likelihood of failure due to operating temperature
		1.1.21	Circumferential	Initial Flaw Density	PWSCC	Assess the sensitivity of the likelihood of failure due to the initial flaw dimensions
[Ref] U	RVIN	1.2.0	Circumferential	PWSCC(DM1)	PWSCC	Assess the base likelihood of failure caused by PWSCC initiation and growth with no ISI, mitigation, or seismic effects

03. Preliminary evaluation results(2/6)

CHNP

- <u>Probability</u> of rupture, TWC(leak), Initiation(crack)
- <u>LBB QoI</u>(LBB Time Lapse, LBB Ratio)

03. Preliminary evaluation results(3/6)

Probability results comparison with PRO-LOCA and xLPR

03. Preliminary evaluation results(4/6)

2024 5th ISPMNA Oct. 7.-9., Tokyo

Probability results of other sensitivity cases

03. Preliminary evaluation results(5/6)

LBB Time Lapse, T(yr)

2024 5th ISPMNA Oct. 7.-9., Tokyo

LBB QoI results

BBB Katio, L

03. Preliminary evaluation results(6/6)

Summary of <u>Probability of Rupture</u> comparison

Case No.	Prob. Of	Rupture	Constitute
	PROLOCA	xLPR[1]	Sensitivity
1.1.0	8.20E-4	1.25E-3 (±1.1E-4)	Base
1.1.1	3.29E-1	7.68E-1 (±6.0E-3)	Crack Initiation Process
1.1.2	5.00E-3	1.23E-3 (±1.1E-4)	WRS
1.1.7	2.27E-3	5.33E-3 (±2.3E-4)	Normal Operating Load
1.1.9	5.20E-4	3.05E-4 (±5.4E-5)	MSIP
1.1.10	2.70E-2	6.86E-3 (±1.2E-3)	10-y period(w/ Crack Detection)
	4.22E-3	3.30E-4 (±2.6E-4)	5-y period(w/ Crack Detection)
1.1.11	1.27E-2	5.29E-3 (±1.0E-3)	ISI Model Parameter(10-y period)
	5.60E-4	2.01E-4 (±2.0E-4)	ISI Model Parameter(5-y period)
1.1.14	9.12E-1	9.56E-1 (±2.9E-3)	H ₂ 25cc/kg
	4.17E-1	-	H ₂ 50cc/kg
1.1.20	1.56E-3	3.02E-3 (±1.7E-4)	Operating Temperature
1.1.21	6.94E-1	8.80E-1 (±4.6E-3)	Initial Flaw Dimension
1.2.0	0	0	Base

Chapter 04

Next steps and Conclusion

04. Next steps

- Currently, PFM preliminary evaluation using xLPR is being conducted for domestic nuclear power plants Hanul 5 and 6(~ '24. 10.)
 - RCS piping, SIS, SCS piping
- A panel of domestic experts will be formed and discussions on PFM results will be held
- Formation of prior consensus with domestic regulatory agencies on this series of methodologies('24.11.)

04. Concluding Remarks

- The possibility of future regulatory issues has emerged due to the revision of regulatory requirements for safety analysis
- In preparation for this, KHNP intends to classify LBLOCA as Beyond DBA and develop IBLOCA optimal methodology to secure safety margin
- To this end, in the first stage, a preliminary PFM evaluation for LBLOCA rupture exclusion is carried out and an evaluation procedure is being developed

÷

