Implementation of Enhanced Uncertainty Analysis into Probabilistic Fitness-for-service Evaluations of Pressure Tubes in CANDU Reactors

Leonid Gutkin, Christopher Manu Kinectrics Inc. Toronto, Ontario, Canada

۲

Fifth International Symposium on Probabilistic Methodologies for Nuclear Applications

CONFIDENTIALITY NOTICE: This presentation contains information that cannot be shared without permission from CANDU Owners Group.

Tokyo, Japan October 7 to 9, 2024

Outline

□ Introduction

- Enhanced Uncertainty Analysis
- Projects, Stages and Tasks
- □ Infrastructure Development

□ Summary

Introduction

- Probabilistic fitness-for-service evaluations of pressure tubes are performed according to Canadian Nuclear Standard CSA N285.8
- Probabilistic evaluations related to pressure tube flaws, as currently performed, include uncertainty analysis <u>at baseline level</u>
- CSA N285.8 requires that <u>enhanced uncertainty analysis</u> be performed when outcome of probabilistic evaluation reaches a specified level with respect to relevant acceptance criterion
- CSA Standard N285.8 provides methodology for enhanced uncertainty analysis to be incorporated into relevant probabilistic evaluations

Introduction

- Work program is underway to <u>establish the inputs</u> and to <u>develop the</u> <u>tools</u> required to perform enhanced uncertainty analysis for probabilistic evaluations related to pressure tube flaws
 - Work program involves five projects addressing different aspects of methodology for enhanced uncertainty analysis
 - Work program structure recognizes that probabilistic evaluations related to pressure tube flaws share a significant number of input variables

Development of infrastructure is required for implementing enhanced uncertainty analysis

Objective

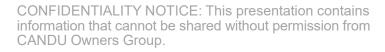
Review probabilistic evaluation using bottom-up approach focusing on:

- Identification of influential sources of uncertainty in probabilistic evaluation results
- Characterization of influential sources of uncertainty in probabilistic evaluation results
- Assessment of impact of influential sources of uncertainty on probabilistic evaluation results

Key elements

- □ Identification of influential input variables
- Characterization of uncertainties in influential variables
- Characterization of statistical correlations ** among influential variables
- Incorporation of uncertainty characterization results into probabilistic evaluation

** Correlations originating from shared sources of uncertainty



Identification of influential variables

Identification of influential variables allows directing greater effort towards uncertainty characterization of non-deterministic variables having greater effect on probabilistic evaluation outcome

□ Approaches to identification of influential variables

- Analysis of probabilistic evaluation outputs
- Sensitivity analysis
- Expert judgement

Characterization of uncertainties

Statistical assessment and expert judgement are recognized as complementary approaches, and either one may be used as the primary approach, on a case-by-case basis

Expert judgement as primary approach involves a formal process for elicitation and aggregation of expert opinions

Uncertainty components in model response: Originate from different sources in calibrated parametric models and in statistical models

Propagation of uncertainties

□ Approaches to propagation of uncertainties

- Monte Carlo simulation method
- Other appropriate methods

Statistical correlations are to be investigated and appropriately accounted for in the probabilistic evaluation

Currently no provisions with respect to using nested or non-nested sampling for uncertainty propagation

Scope of Work

Development of infrastructure for enhanced uncertainty analysis

Identification of influential input variables

Projects

Characterization of uncertainties

Characterization of statistical correlations

Modification of probabilistic computer codes

Iterative Approach to Inputs

□ Inputs in enhanced uncertainty analysis:

- Non-deterministic input variables considered to be influential
- Uncertainties in influential input variables
- Statistical correlations among influential input variables

Stage 1: Baseline inputs

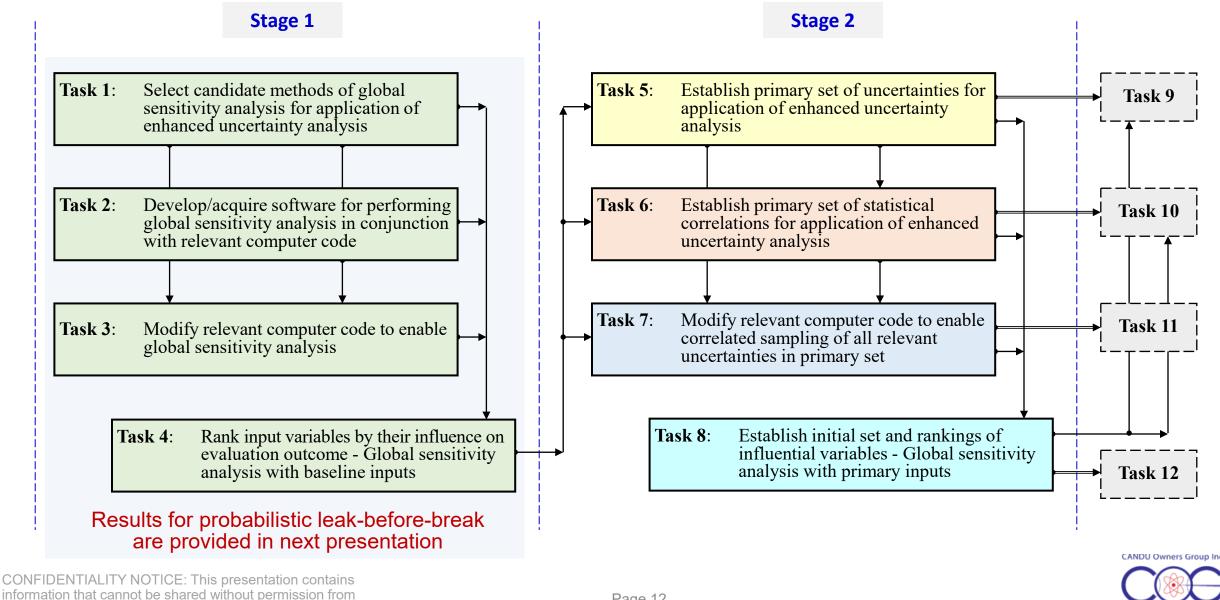
Inputs used in relevant probabilistic evaluations as currently performed

Stage 2: Primary inputs

Baseline uncertainties reviewed and updated if required Statistical correlations involving primary uncertainties

Stage 3: Additional inputs

Additional uncertainties as per guidelines of CSA N285.8 Statistical correlations involving additional uncertainties

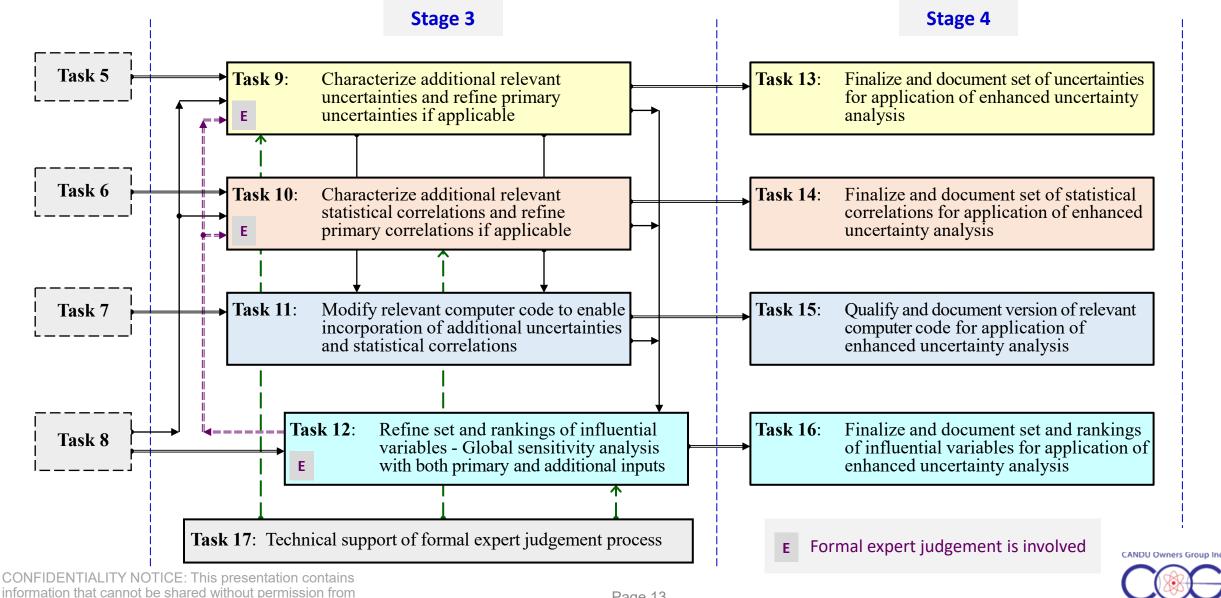


Implementation Stages

CANDU Owners Group.

Stages 1 and 2

"Excellence Through Col



Implementation Stages

CANDU Owners Group.

Stages 3 and 4

"Excellence Through Collaboratio

Infrastructure Development

Sensitivity analysis

Local sensitivity analysis

Sensitivity analysis that determines the impact of input variables on the evaluation outcome at a reference point, without explicit consideration of uncertainties

Global sensitivity analysis

Sensitivity analysis that apportions the uncertainty in the evaluation outcome to the uncertainty in the input variables across a multi-variable evaluation domain

Infrastructure Development

Sensitivity analysis

□ Global sensitivity analysis methods:

- Provide substantially more comprehensive measures of sensitivity of the evaluation outcome to its inputs, thereby improving confidence in analysis results
- Are substantially more efficient in assessing the impact on evaluation outcome of input uncertainties and interactions among inputs
- Are considered more suitable for implementation into probabilistic evaluations related to pressure tube flaws
- Require tools to be developed and used in conjunction with relevant probabilistic evaluations

Summary

- Probabilistic fitness-for-service evaluations of pressure tubes are performed according to Canadian Nuclear Standard CSA N285.8
- Probabilistic evaluations related to pressure tube flaws, as currently performed, include uncertainty analysis at baseline level
- CSA N285.8 provides methodology for enhanced uncertainty analysis to be incorporated into relevant probabilistic evaluations when required

□ Key elements of enhanced uncertainty analysis as per CSA N285.8:

- Identification of influential input variables
- Characterization of uncertainties in influential variables
- Characterization of statistical correlations among influential variables
- Incorporation of uncertainty characterization results into probabilistic evaluation

Summary

- Work is in progress to implement enhanced uncertainty analysis into probabilistic evaluations related to pressure tube flaws
 - Scope of work addresses different aspects of methodology for enhanced uncertainty analysis
 - Five projects, including development of infrastructure
- Infrastructure for enhanced uncertainty analysis in probabilistic evaluations strongly relies on global sensitivity analysis
 - Next presentation describes global sensitivity analysis with baseline inputs in probabilistic evaluations of pressure tube leak-before-break
 - Same method of global sensitivity analysis is suitable for all probabilistic evaluations related to pressure tube flaws

Acknowledgements

□ Valuable discussions with:

- D. Cho of Bruce Power
- M. Baghbanan, T. Carneiro, J. Lam and M. Poloni of Ontario Power Generation
- T. Hunt, C. Liu, D.H.B. Mok and D.A. Scarth of Kinectrics

□ Support from CANDU Owners Group is appreciated

Thank you