

1

Reduced Order Representation of Crystallographic Texture for Surrogate Modelling and Uncertainty Quantification

Hugh Dorward

Mahmoud Mostafavi

David Knowles

Matthew Peel

University of Bristol, Department of Mechanical Engineering

Motivation

Motivation

Parameterisation of Crystallographic Texture

- Objective is to reduce the **orientation distribution function** to a **small number of input parameters** for the surrogate model.
- Options include **generalised spherical harmonics (GSH), Rodrigues parameterisation**, binning orientations in **Euler angle** space etc.
- To appropriately capture variance in texture these require far too many input variables.
- The problem is they **over generalise** densities in the orientation distribution function they can represent.

bristol ac uk

Parameterisation of Crystallographic Texture

Actually only interested in narrow subset of **physically possible** orientation distribution functions.¹

bristol.ac.uk

Principal component analysis (PCA) linear transformation $S = Cov(x_i, x_j) = \mathbb{E}[(x_i - \mathbb{E}[x_i])(x_j - \mathbb{E}[x_j])]$ $Sa = \lambda a$

1. Mokhtarishirazabad, M., McMillan, M., Vijayanand, V.D., Simpson, C., Agius, D., Truman, C., Knowles, D. and Mostafavi, M., 2023. Predicting residual stress in a 316L electron beam weld joint incorporating plastic properties derived from a crystal plasticity finite element model. *International Journal of Pressure Vessels and Piping*, *201*, p.104868.

Creating the Training Dataset

- Sufficiently large RVE shows **limited spread** in resulting stress strain curves.
- Morphology kept consistent and only **texture is changed** by sampling new orientations for each grain.

7

• Curves shown here all for an untextured, equiaxed RVE.

Gaussian Process Model Outputs (Functional Principal Component Analysis

Functional principal component analysis (fPCA) allows parameterisation of the stress-strain curve by scalar fPCA scores:

Gaussian Process Regression

Gaussian Process Regression

Predicts a **conditional probability** at each point giving an estimate for the output value and **a variance**.

Relationship between points described by a **kernel function**:

$$
k(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp\left(-\frac{1}{2\ell}|\mathbf{x} - \mathbf{x}'|^2\right)
$$

This determines the effect of any two points on each other.

Results from Gaussian Process Prediction

13

- 750 different textures are used to train the GPR model.
- 32 textures are kept aside at random to validate the GPR model:

Results including Model Uncertainty

• Uncertainties can be propagated through the fPCA representation of the stress strain curve to visualise variance across the domain.

$$
\sigma^2\left(\varepsilon'\right) = \hat{\sigma}_\mu^2\left(\varepsilon'\right) + \sum_{j=1}^J \sigma_j^2 \phi_j^2\left(\varepsilon'\right) + \hat{\sigma}_\epsilon^2
$$

• Model uncertainty for 5*σ* credible range equivalent to $+6.1$ MPa at maximum.

bristol.ac.uk

14

Results from Gaussian Process Prediction from Taylor Factor

Summary

- This framework demonstrates an example of surrogate modelling for **processstructure-property** linkages.
- Can act **alongside physical models** to provide **uncertainty quantification**.
- These methods (PCA, fPCA, GP) **generalisable** to other physical models and processes.
- Requires consideration of important **engineering parameters** rather than using hidden latent parameters.

bristol ac uk

Future Work

- Comparison of Taylor factor and GSH-PCA parameterisations.
- Quantification and propagation of uncertainties related to variation in texture across a feature, experimental uncertainty, omitted variables (such as grain misorientation).
- Application to microstructures indicative of welded features to feed into macroscopic weld FE models.
- Inclusion of grainsize and morphology into the model inputs.

bristol ac uk

Thank you for your attention

hugh.dorward@bristol.ac.uk

Gaussian Process Regression

Gaussian process regression predicts a conditional probability at each testing datapoint therefore giving an **estimate for the output value and a variance** at each point:

$$
\begin{bmatrix} \mathbf{y} \\ \mathbf{y}_* \end{bmatrix} \sim \mathcal{N}\left(\mathbf{0}, \begin{bmatrix} K(X,X) & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{bmatrix}\right)
$$

The relationship between points in the input variable space can be described by a **kernel function**:

$$
k(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp\left(-\frac{1}{2\ell}|\mathbf{x} - \mathbf{x}'|^2\right)
$$

Model evaluation is done by considering the conditional probability of the multivariate Gaussian:

$$
\mathbf{y}_{*}|X_{*}, X, \mathbf{y} \sim \mathcal{N}(K(X_{*}, X)K(X, X)^{-1}\mathbf{y},
$$

$$
K(X_*, X_*) - K(X_*, X)K(X, X)^{-1}K(X, X_*))
$$

bristol ac uk