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Parameterisation of Crystallographic Texture
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• Objective is to reduce the orientation 

distribution function to a small number of 

input parameters for the surrogate model.

• Options include generalised spherical 

harmonics (GSH), Rodrigues 

parameterisation, binning orientations in Euler 

angle space etc.

• To appropriately capture variance in texture 

these require far too many input variables.

• The problem is they over generalise densities 

in the orientation distribution function they can 

represent.



Parameterisation of Crystallographic Texture
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Actually only interested in narrow subset of 

physically possible orientation distribution 

functions.1

1. Mokhtarishirazabad, M., McMillan, M., Vijayanand, V.D., Simpson, C., Agius, D., Truman, C., Knowles, D. and Mostafavi, M., 2023. 

Predicting residual stress in a 316L electron beam weld joint incorporating plastic properties derived from a crystal plasticity finite element 

model. International Journal of Pressure Vessels and Piping, 201, p.104868.
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transformation



Creating the Training Dataset
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• Sufficiently large RVE shows limited spread 

in resulting stress strain curves.

• Morphology kept consistent and only texture 

is changed by sampling new orientations for 

each grain.

• Curves shown here all for an untextured, 

equiaxed RVE.



Gaussian Process Model Outputs (Functional 
Principal Component Analysis 
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Functional principal component analysis (fPCA) 
allows parameterisation of the stress-strain curve by 
scalar fPCA scores:



Gaussian Process Regression
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Gaussian Process Regression

Predicts a conditional probability at each 
point giving an estimate for the output value 
and a variance.

Relationship between points described by a 
kernel function:

This determines the effect of any two points 
on each other.
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Results from Gaussian Process Prediction

• 750 different textures are used to train the GPR 
model.

• 32 textures are kept aside at random to validate 
the GPR model:
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Results including Model Uncertainty

• Uncertainties can be propagated through the 
fPCA representation of the stress strain curve to 
visualise variance across the domain.

• Model uncertainty for 5σ credible range 
equivalent to ±6.1 MPa at maximum.
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Summary of Modelling Approach
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Results from Gaussian Process Prediction from 
Taylor Factor
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Summary

• This framework demonstrates an example of surrogate modelling for process-
structure-property linkages.

• Can act alongside physical models to provide uncertainty quantification.

• These methods (PCA, fPCA, GP) generalisable to other physical models and 
processes. 

• Requires consideration of important engineering parameters rather than using 
hidden latent parameters.
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Future Work

• Comparison of Taylor factor and GSH-PCA parameterisations.

• Quantification and propagation of uncertainties related to variation in texture 
across a feature, experimental uncertainty, omitted variables (such as grain 
misorientation). 

• Application to microstructures indicative of welded features to feed into 
macroscopic weld FE models.

• Inclusion of grainsize and morphology into the model inputs.

19



Thank you for your attention

hugh.dorward@bristol.ac.uk
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Gaussian Process Regression
Gaussian process regression predicts a conditional probability at each testing datapoint 
therefore giving an estimate for the output value and a variance at each point:

The relationship between points in the input variable space can be described by a kernel 
function:

Model evaluation is done by considering the conditional probability of the multivariate 
Gaussian:
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