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Background on Pressurized Thermal Shock (PTS)
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• PTS may occur when emergency core 
cooling water is injected into pressurized 
RPV under any of postulated initiating 
events

• Rapid cooling of RPV internal surface 
causes thermal tensile stresses 𝜎𝑇(𝑟, 𝑡)
in addition to pressure-induced stresses
• Thermal stress magnitude depends on a 

temperature gradient through the RPV wall

• RPV integrity assessment for PTS events 
is one of the challenges for safety 
analyses for LTO of aged NPPs:
• Thermal stresses due to PTS transient in 

combination with pressure loads,
• Reduced material toughness due to neutron 

irradiation, 
• Presence of flaws in high stress areas



Background on APAL
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• Current RPV integrity assessments for PTS scenarios 
are mostly based on deterministic calculations of 
margins against brittle fracture
• Demonstration of sufficient margins may be a difficult task

• APAL project (Advanced PTS Analysis for LTO):
• Multidisciplinary project (incl. TH analyses)

• Further development of probabilistic and deterministic 
analysis methods for assessing PTS and RPV safety margins

• Explicit consideration of distributed parameters (fracture 
toughness, fluence, chemical composition, flaw size)

• Impact of thermal hydraulic (TH) uncertainties and different 
LTO improvements on the RPV safety assessment

• Quantification of safety margins

• Development of best-practice guidance



Baseline Probabilistic Benchmark - Tools verification

• Probabilistic analyses are complex involving many 
uncertainties

• Variety of probabilistic tools used in APAL
• Mostly, in-house tools (coded in MATLAB, Python) and 

FAVOR 

• Tools verification based on pre-defined data:
• Based on experience from previous projects, an 

important prerequisite in probabilistic assessments 
before moving to analyses with partner-specific 
transient data 

• Comparison between different probabilistic codes for 
verification of their performance and accuracy

• Also, some ambiguities with interpretation of certain 
input data were identified and adjusted
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Verification of basis for used probabilistic tools

• Random number generator (RNG) performance

• Generation of flaw size distribution

• Generation of data from a truncated distribution

• Verification of conditional probability of 
initiation (CPI) for provided 𝑲𝑰 and adjusted 
reference temperature (ART)
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Random number generator (RNG) performance
• Monte Carlo Simulation (MCS) tools require appropriate 

RNGs

• Verification of RNGs in probabilistic tools used in APAL for 
eliminating uncertainty related to insufficient RNGs

• Sequence length (or period) of RNGs is one of the main 
characteristics, especially for targeting low probabilities

• Standard RNGs in common software tools may be 
insufficient
• e.g. RND() in Excel/VBA RNG has a sequence period of about 1.6e7

• RAND() uses Mersenne-Twister RNG with much longer sequence

• Targeting probabilities of 10-9 requires at least 1011

simulations with standard MCS
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Mersenne-Twister RNG

Sequence length 

Excel/VBA RNG



RNG performance - Verification
• Benchmark cases for RNG verification:

• Evaluate fracture initiation probability by 
solving the limit state function 𝐾𝐼𝐶 – 𝐾𝐼

• 𝐾𝐼𝐶 probabilistic parameter
(normal distribution, 𝜇 = 80 MPa m, 𝜎 = 4 MPa m)

• 𝐾𝐼 deterministic parameter

• Taking the inverse of the normal cumulative 
distribution it can be analytically shown:

1. For 𝐾𝐼 = 61.975 MPa m, CPI= 3.3∙10-6

2. For 𝐾𝐼 = 56.01 MPa m, CPI= 1.0∙10-9

• These cases were evaluated using Monte Carlo 
tools with chosen RNGs using 108 and 1011 

samples. 
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Partner
Sequence 

Length
Method

P1, P2, P5 4.3·106001 Mersenne-Twister

P7 4.3·106001 WELL19937c (similar to
Mersenne-Twister)

P8 1.0·1012 Lehmer (Park-Miller) linear 
congruential generator

P10, P3, P6 2.3·1018

Based on a composite of two 
multiplicative linear 
congruential generators using 
32-bit integer arithmetic

P11 3.4·1038 Permuted Congruential 
Generator (64-bit, PCG64)



Generation of tabulated data for UCC (and TCC)

• One of the challenges in APAL was related to 
development of a realistic flaw distribution for 
underclad (UCC) and through-clad (TCC) cracks 
to be used in probabilistic analyses

• Significance of UCC cracks for RPV failure 
probabilities had previously been 
underestimated in comparison to other flaw 
types

• Information in open literature for statistically 
validated basis and UCC flaw distribution is 
very limited

8



PNNL flaw distribution model for UCC
• PNNL flaw distribution model for UCCs 

(NUREG-1874) was used as the basis in APAL

• Parametric definition of PNNL:
• the conditional distribution for the bounding 

(maximum) flaw depth, 

• the conditional distribution of the through-wall flaw 
depth (as a fraction of the bounding depth)

• the conditional uniform distribution of the length
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• Not suitable for an arbitrary probabilistic 
code

• Contains some ambiguities requiring 
certain interpretation and assumptions

• Generic tabulated distribution of UCC  
flaw depth (in terms of CDF) is required 
for codes used in APAL
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Generation of tabulated data for UCC (and TCC)
• Development of generic CDF for UCC flaw depth as a 

round-robin exercise:
• Individual interpretations, assumptions and mathematical 

treatment of PNNL model

• Mostly, Monte Carlo simulations were used
• Some partners used a direct integration approach

• Good agreement between partners
• Minor differences in the obtained CDFs may be related to different 

assumptions and mathematical treatment of the PNNL model

• One CDF was selected for further use in APAL
• Median UCC flaw depth is 𝑎median = 1.2 mm

• UCC flaw length is defined as ratio Τ2𝑐 𝑎 = 6 (or Τ2𝑐 𝑎 = 3 for 
optional analyses)

• Through-clad crack (TCC) depth distribution was 
defined as UCC+6 mm (cladding thickness)



Data generation from truncated distributions

• Some distributed parameters must be truncated to avoid non-physical 
samples 
• Based on experience from previous international probabilistic benchmarks it has 

been shown that incorrect treatment of truncated distributions may lead to errors 
in probabilistic analyses.
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• Three different approaches for 
truncating a normal distribution 
were investigated in APAL: 
• Use a truncated normal distribution

(recommended method)

• Re-sample values outside of 
truncation limits. Considered as a 
good alternative method but may lead 
to increased computational time

• Cut-off all values outside of the 
truncation limits and set these values 
to the truncation limit (used in FAVOR)



Data generation from truncated distributions
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Case MV [%] SD [%]
One-sided 

truncation [%]
Trunc. reached 

for -X SD
Prob. Cu < 0

Effect of 
truncation

1 0.086 0.01 0 8.6 3.9858e-18 Small

2 0.086 0.03 0 2.9 0.0020741 Medium

3 0.086 0.05 0 1.7 0.04271622 Large

Case
Re-Sampling Cut-Off Truncated Distribution

MV Scatter MV Scatter MV Scatter

1 0.0860 0.0100 0.0860 0.0100 0.0860 0.0100

2 0.0862 0.0297 0.0860 0.0300 0.0862 0.0297

3 0.0908 0.0455 0.0869 0.0481 0.0907 0.0455

• Re-sampling gives a good agreement with a 
correctly defined truncated distribution for 
small coefficient of variation (COV=SD/MV)

• Cut-off approach can give a large error for 
large COV
• Better agreement for small COV



Verification of CPI for provided 𝐾𝐼 and ART
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• Aim: Verification of probabilistic tools for a defined transient over 
time 𝑡 by evaluating the CPI and instantaneous 𝑐𝑝𝑖(𝑡) for given 
ART and pre-defined stress intensity factors 𝐾𝐼 𝑡 and crack tip 
temperature 𝑇(𝑡)

• Pre-defined data (same for all partners):
• 𝐾𝐼 for TCC and UCC cracks (inside and outside plume)

• Temperatures at the crack tips

• ART for each case

• Limit conditions:
• Tangent approach

• Simplified WPS (Max WPS approach)

• Calculate CPI by using fracture toughness concepts:
• RTNDT (ASME) - normal distribution with truncation at ±3 SD)

• T0 (Master Curve) –Weibull distribution 

• RTNDT (FAVOR) - Weibull distribution 



Verification of CPI for provided 𝐾𝐼 and ART

14

Crack
RTNDT T0

Tangent 
Approach

Max WPS 
Approach

Tangent 
Approach

Max WPS 
Approach

TCC circum. crack 9.933E-01 7.169E-03 7.308E-01 1.873E-02
UCC axial crack 2.114E-01 1.647E-02 2.140E-01 9.217E-03

• Perfect agreement between different codes for CPI and cpi(t)

• Different MCS codes and analytical solutions

• CPI values for Max WPS are lower compared with Tangent approach

• Different shapes of cpi(t) curves for analysed fracture toughness 
concepts, specifically for UCC:

• RTNDT and T0 concepts result in similar final CPIs but occur at different times 
through the transient



Summary

• Preparatory steps, including tools verification (considered in this 
presentation) and round-robin assessments with cross-checking 
of analysis results (see next presentation), performed in 
probabilistic benchmarks in APAL allowed for:
• Verification of different codes and provided methods

• Demonstration of good agreement between different codes for pre-
defined input data

• Verification and adjustment of some initially defined parameters

• Improvement of code performance

• Generic CDF for UCC flaw depth was established based on 
parametric PNNL flaw distribution model
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Thank you for your attention!
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