

Activities of The Committee on Practical Application of PFM - Part 2: Benchmark Analysis on Failure Frequency Assessment for Reactor Pressure Vessel with Analysis Conditions of a Japanese Actual PWR Plant-

> S. Miyashiro^{*1}, T. Hirota^{*2}, H. Takamizawa^{*3} R. Nakazaki^{*4}, S. Yoshimura^{*5}

*1: Central Research Institute of Electric Power Industry
*2: Mitsubishi Heavy Industry, Ltd.
*3: Japan atomic energy agency
*4: Kansai electric power company, Incorporated
*5: The university of Tokyo

ISPMNA5 October 7th-9th, 2024

Concept of the benchmark analysis

- In this benchmark analysis, 3 participants (from MHI, JAEA, and CRIEPI) assessed failure frequency of RPVs by same code (PASCAL4) with the same analysis conditions ("Basic analysis condition" shown in presentation Part 1).
- Each participant freely made input files excepting specified analysis conditions.
 There are differences in time steps or some internal parameters.
 - Those differences may cause difference in failure frequency calculated by probabilistic fracture mechanics (PFM).
- The difference of the failure frequency calculated by different participants with analysis conditions of a Japanese actual PWR plant were investigated through the benchmark analysis.

Deterministic part of benchmark analysis

- Analysis codes used for thermal and stress analyses
 - ➢ JAEA: Pre-PASCAL
 - CRIEPI: Pre-PASCAL
 - > MHI: Abaqus
 - * PASCAL4 was used for PFM analysis and stress intensity factor calculation.

Stress intensity factor of representative flaws were compared.

- Embedded flaw
 - Large break loss of coolant accident transient (TH056)
 - Depth: 2a/t=2%, Aspect ratio c/a = 12.5
 - Position: 0.1mm, 10mm (from clad/base interface)
- Inner surface flaw
 - Stuck open valve transient (TH126)
 - Depth: 6.5mm, Aspect ratio 2c/a = 6, 100

Stress intensity factor of embedded flaws (LOCA-056)

- Stress intensity factor were mostly in good agreement, but had some variation due to differences in analysis codes and/or time step setting.
 - Difference in stress intensity factor at peak (=18 min) was approximately 8% for the case of 10 mm from clad/base interface.
 - Stress intensity factor were agreed well for other cases.

Stress intensity factor of surface flaws (SOV-126)

- Stress intensity factor were mostly in good agreement, but had some variation due to differences in analysis codes and/or time step setting.
 - Difference in stress intensity factor around highest peak (=95 min) was approximately 6% in Maximum for one case (in right figure) when weld residual stress (RS) was considered.
 - Stress intensity factor were agreed well for other cases.

Results of probabilistic part of benchmark analysis

- Frequency of crack initiation (FCI) and Through wall crack frequency (TWCF) calculated by three participants (MHI, JAEA, CRIEPI) were compared.
 - Mean value of FCI was on the order of 10⁻⁶ regardless of who analyzed. The maximum value (JAEA) was less than twice the minimum value (MHI).
 - Mean value of TWCF was on the order of 10⁻⁸ regardless of who analyzed. The maximum value (JAEA) was less than 1.2 times the minimum value (MHI).

	MHI	CRIEPI	JAEA
Frequency of crack initiation (FCI)	<mark>1.67E-06</mark>	2.19E-06	2.94E-06
Through wall crack frequency (TWCF)	<mark>2.33E-08</mark>	2.55E-08	<mark>2.75E-08</mark>

• Do the differences shown above affect judgement of integrity of RPV?

No. the difference are not considered to affect the judgement, because TWCF is approximately 2 digits lower than the acceptance criteria in the US (1.0 X 10⁻⁶ /ry).

Further investigation

- Even if the difference in failure frequency (TWCF) is not significant, knowledge about detailed situation of those differences is useful.
- Further detailed investigation were conducted.
 - Mean value of TWCF was divided with events and flaw types
 - There are 488 event/flaw type combinations
 - 61 PTS events (including LOCA, MSLB and SOV) X
 - 8 flaw types (2 positions X 2 types X 2 directions)
 - 2 positions: base metal (base), weld part (weld)
 2 types: surface flaw (surf), embedded flaw (embe)
 2 directions: axial flaw (axial), circumferential flaw (circ)

* name in brackets will be used in the figures from next page.
 ex. "base_surf_axial" means surface axial flaw in base metal.

Comparison of TWCF for each event and each flaw type (Comparison of mean values on log axes)

- The 8 types of flaws are indicated by color of symbols, and the 61 PTS events are shown as multiple symbols with the same color.
- ◆ Although some plots seems outliers, their differences are less than 10⁻¹⁰.
 ⇒ Those differences were plotted on linear axis in the next page.

© CRIEPI 2024

* Results less than 1.0×10^{-25} are not shown. 8

Comparison of TWCF for each event and each flaw type (Comparison of difference in mean values on linear axis)

- ◆ Difference in TWCF is smaller for event/flaw type combination with lower TWCF.
 ⇒ The differences in TWCF for the order less than 10⁻¹⁰ is very small.
- The maximum difference for one event/flaw type combination was less than 1% of 1.0 × 10⁻⁶ (acceptance criteria of the US).

© CRIEPI 2024

* Results less than 1.0×10^{-11} are shown as 1.0×10^{-11} .

Comparison of analysis conditions (input files made by each participant)

- Input files of all participants were compared after benchmark analysis.
- The difference in input files were shown in the following table.
 - Those differences cause differences in calculated failure frequency.

Parameter	МНІ	JAEA	CRIEPI	
(1)-1 Thermal and stress analysis (time steps)	MHI version (Douglas-Peucker)	JAEA version (Douglas-Peucker)	CRIEPI version (Regular intervals)	
(1)-2 Thermal and stress analysis (Software)	Abaqus	PrePASCAL	PrePASCAL	
(2) Fluence (#Fluence datapoint)	5 points	4 points	4 points	
(3) Fluence distribution (#Subregion)	252 X 74	502 X 150	132 X 20	
(4) Sample size of event occurrence frequency	1000	100	10	
(5) Truncation threshold (#Zero value)	1.0×10 ⁻²⁰	1.0×10 ⁻³⁰	1.0×10 ⁻²⁰	
(6) Truncation threshold (#CPFPARAM)	1.0×10 ⁻¹⁶	1.0×10 ⁻²⁵	1.0×10 ⁻¹⁶	
(7) Datapoints of yield stress (#PSSYDT)	11 points	11 points	8 points	
(8) Version of PFM code (PASCAL)	PASCAL 20180807	PASCAL4.2A	PASCAL4.1B	
* The words after "#" are the name of parameters used in PASCAL4.				

Conclusion

- Failure frequency calculated by three participants (MHI, JAEA and CRIEPI) were compared with analysis conditions of a Japanese actual PWR plant.
- Mean value of TWCF was on the order of 10⁻⁸. The maximum value was less than 1.2 times of the minimum value.
 - the difference are not considered to affect the judgement, because the TWCF was approximately 2 digits lower than the acceptance criteria in the US (1.0 X 10⁻⁶ /ry).
 - Acceptance criteria and/or judgement way other than acceptance criteria have not been determined in Japan. Therefore, treatment of variation and difference in failure frequency should be discussed for application of PFM.
 - ⇒We believe that our benchmark analysis provides technical basis for those discussions.