Development of probabilistic fracture mechanics code for RPVs: FERMAT

Central Research Institute of Electric Power Industry

Satoshi Miyashiro, Takayuki Sakai, Masaki Nagai and Masato Yamamoto

4th ISPMNA

November 3rd, 2022

Background

- ◆ The actual implementation of PFM on integrity assessment standards of reactor pressure vessels (RPVs) is not yet actualized in Japan. However, The discussions for practical application of PFM is ongoing.
- Guideline JEAG 4640-2018(JEAG4640) was established in 2018.
 - > JEAG4640 gives a standard procedure for evaluating failure frequency of RPVs based on PFM.
- ◆ There are some differences on models for integrity assessment from other countries (ex. United states).
 - Equations for predicting radiation embrittlement
 - > Fracture toughness curve
 - > etc.

PFM analysis approach in CRIEPI

- CRIEPI takes following 2 approaches to develop PFM analysis basis for RPVs.
 - 1 FERMAT (Fracture mechanics Evaluation of RPV MATerials)
 - 2 Japanese version of FAVOR

Background

- PASCAL4 has already been developed by JAEA to evaluate Japanese RPVs based on PFM.
 - PASCAL4 is excellent code. That has so much flexibility.
- ◆ PFM code tends to be complex for newcomers.
- We are developing a new PFM analysis code FERMAT.
 - ➤ The concept of FERMAT is minimal design for practical use in structural integrity assessment of RPVs based on JEAG 4640-2018.
- ◆ FERMAT code targets at both crack initiation and crack arrest.
 - > We are verifying modules for crack arrest model and embedded flaws now.
 - Results for surface crack initiation are reported in this presentation.

Objective

- ◆ This presentation reports the following.
 - Outline of FERMAT
 - Comparison of results between FERMAT and PASCAL4.
 - ⇒This comparison has been conducted as part of validation.

Outline of FERMAT

All processes (including pre-processes and post-processes)
 can be finished in one code with graphical user interface.

Outline of FERMAT

- ◆ The calculation models of FERMAT are based on guideline JEAG4640.
- Sections of JEAG4640 are shown below.

➤ PFM-1000: General information

➤ PFM-2000: Calculation of stress intensity factors

> PFM-3000: Calculation of fracture toughness

PFM-4000: Modeling of uncertainty

> PFM-5000: Calculation of failure frequency

- Flow for calculating frequency of crack Initiation is shown below.
 - 1. Calculation of stress intensity factor (K_I)
 - 2. Calculation of fracture toughness (K_{IC}) of materials
 - Calculation of failure frequency (Frequency of crack initiation in this presentation)

Analysis conditions

	items		Analysis conditions
Transients	Determine transients		Dominant 13 transients in Japanese RPV conditions selected from transients of Beaver Valley [13]
Flaws	Surface flaw	Crack direction Crack depth [mm] Aspect ratio	Only circumference flaws 6.5 2, 6, 10, 100
Irradiation conditions	Neutron fluence [n/cm²] (E>1MeV) Neutron flax [n/c Irradiation tempe		Not considered 7×10^{19} 13.1% 4.62×10^{10} 288
Chemical composition	Base Cu [wt%] Base Ni [wt%]	Mean value Standard deviation Mean value Standard deviation	0.16 0.01 0.61 0.02
Initial RT _{NDT}	Base [°C] Weld [°C]	Mean value Standard deviation Mean value Standard deviation	-3.9 ^{**} (-5.0) 9.40 -48.9 ^{**} (-50.0) 9.40

Deterministic analysis (Temperature and stress distribution)

- Analysis of temperature and stress distribution has been conducted for small breaking loss of coolant accident (SBLOCA).
- Results of analysis by FERMAT and PASCAL4 were well corresponding each other.

Deterministic analysis (Stress intensity factor)

- Stress intensity factor for SBLOCA is shown below.
- Difference in stress intensity factor calculated by those two codes was not so significant, even though different models were adopted.

Time dependence of stress intensity factor (Aspect ratio = 6, residual stress is considered)

Evaluation of K_{IC} and probability of crack initiation

- $^{\circ}$ K $_{\scriptscriptstyle
 m IC}$ curve and cumulative probability $\Phi_{\scriptscriptstyle
 m KIC}$ are determined by following equations $^{
 m [6]}$ for each evaluation point of K_1 (from K_1 to K_6 in bottom right figure).
- Maximum Φ_{KIC} is determined as conditional probability of initiation.

$$\Phi_{K_{Ic}} = 1 - exp \left[-\left(\frac{K_{Ic} - a_{K_{Ic}}}{b_{K_{Ic}}}\right)^{c_{K_{Ic}}} \right]$$

$$a_{K_{Ic}}(\Delta T_{RELATIVE}) = 13.18 + 6.71 \cdot \exp[0.0337(\Delta T_{RELATIVE})]$$

$$b_{K_{Ic}}(\Delta T_{RELATIVE}) = 15.88 + 42.21 \cdot \exp[0.0121(\Delta T_{RELATIVE})]$$

$$c_{K_{Ic}} = 4$$
Temperature of crack tip RT_{NDT} AT_{RELATIVE} = T(r, \tau) - RT_{NDT_C}

$$RT_{NDT_C} = \Delta RT_{NDT} - \Delta RT_{epistemic} + RT_{NDT(0)}$$
Temperature shift caused Initial RT_{NDT}
Time evolution

 $\Delta RT_{epistemic} = -15.60 + 67.56[-\ln(1-P)]^{1/4.31} [^{\circ}C]$ (0 < P < 1)

by radiation embrittlement

Conclusion

- ◆ New PFM analysis code FERMAT was developed and verified.
- We also conducted validation by comparing results of each module.
 - ➤ Results of deterministic analysis by FERMAT and PASCAL4 were well corresponding each other.
 - Results of deterministic analysis by FERMAT were well corresponding to those by PASCAL4 code.
 - There was only a slight difference between stress intensity factor calculated by FERMAT and that calculated by PASCAL4.

Future work

- Crack arrest model and modules for evaluating embedded flaws has already been implemented in FERMAT.
 - We are verifying modules for crack arrest model and embedded flaws now.
 - ■Crack arrest model is complex, and their specifications influence failure frequency.
 - ■Specifications for crack arrest are discussed carefully.