Accounting for Uncertainty in Complex Relationships

Marjorie Erickson & Mark Kirk

erickson@peaiconsulting.com kirk@peaiconsulting.com Presentation to the 3rd International Seminar on Probabilistic Methodologies for Nuclear Applications

> Rockville, MD Oct 22-24, 2019

Phoenix Engineering Associates Inc.

Presentation Outline

PEAI

Probabilistic Models & Codes

- Probabilistic codes are comprised of:
 - a set of models & sub models
 - linked by a framework that enables sampling
 - on distributed input variables and model parameters
 - to account for uncertainty contributions from various sources directly and explicitly.
- Appropriate treatment of uncertainties is key to interpreting the outcomes
 - Information flow through a code controls the cumulative impact of various sources of uncertainty on failure probabilities.
 - Sub-models must be linked together appropriately to ensure that there is no distortion of the flow of information
 - Avoid double counting of uncertainty contribution from key factors
 - Appropriately account for model bias

PFM Codes

Involve models to describe:

Crack driving force defined by

- environment
- loading
- geometry
- manufacturing

Material crack resistance defined by

- strength
- toughness
- fatigue
- SCC

• Treatment of uncertainties that represent some phenomena of interest

 Material crack resistance is the focus of this presentation

Driving force ≤ material resistance

PEAI

Models of Material Resistance to Failure

- Material resistance to through-wall cracking is characterized by various material properties:
 - Strength
 - Fracture toughness
 - Fatigue and SCC initiation and growth rates
- All of these properties are uncertain/distributed
- Many of these properties are correlated & the correlations are uncertain
- Models of properties and correlations should capture the uncertainty inherent in the data

- The behavior of <u>all</u> toughness properties of interest with hardening/ embrittlement is related and can be characterized by the reference temperature (T_o)
 - Cleavage crack initiation (transition)
 - Stopping (arresting) a running cleavage crack
 - Ductile crack initiation (upper shelf)
- Example: Toughness curves for the most embrittled axial weld in a highly embrittlement plant

 \rightarrow At beginning of life

- The behavior of <u>all</u> toughness properties of interest with hardening/ embrittlement is related and can be characterized by the reference temperature (T_o)
 - Cleavage crack initiation (transition)
 - Stopping (arresting) a running cleavage crack
 - Ductile crack initiation (upper shelf)
- Example: Toughness curves for the most embrittled axial weld in a highly embrittlement plant
 - \rightarrow At beginning of life
 - \rightarrow At 40 years

- The behavior of <u>all</u> toughness properties of interest with hardening/ embrittlement is related and can be characterized by the reference temperature (T_o)
 - Cleavage crack initiation (transition)
 - Stopping (arresting) a running cleavage crack
 - Ductile crack initiation (upper shelf)
- Example: Toughness curves for the most embrittled axial weld in a highly embrittlement plant
 - \rightarrow At beginning of life
 - \rightarrow At 40 years
 - \rightarrow At 60 years

- The behavior of <u>all</u> toughness properties of interest with hardening/ embrittlement is related and can be characterized by the reference temperature (T_o)
 - Cleavage crack initiation (transition)
 - Stopping (arresting) a running cleavage crack
 - Ductile crack initiation (upper shelf)
- Example: Toughness curves for the most embrittled axial weld in a highly embrittlement plant
 - \rightarrow At beginning of life
 - \rightarrow At 40 years
 - \rightarrow At 60 years
 - \rightarrow At TWCF \approx 10⁻⁶ / year

Proposed ASME CC N-830-1

- Recent advancements provide opportunities to adopt best estimate toughness models in the ASME Code
 - Models for toughness vs temperature (K_{Jc} , K_{Ia} , J_{Ic} / $J_{0.1}$ / J-R)
 - Models to account for systematic linkage between these quantities $(T_{US} \text{ and } T_{\kappa_{Ia}})$
 - Models provide full statistical distributions, permitting estimation of mean and bounding curves.
- CC N-830-1 proposes a directtoughness approach
 - Proposes use of MC-based suite of best estimate toughness models as alternative to current Appendix A & K methodology
 - Proposed treatment of uncertainties is consistent with the data used in model development

Uncertainty in N-830-1 Toughness Models

- The toughness metrics (K_{Jc} , K_{Ia} , and $J_{Ic}/J-R$) and the index temperatures (T_0 , T_{KIa} , T_{US}) were derived from the same data and thus *reflect the same uncertainties*
 - associated with experimental error (epistemic), and
 - material variability (aleatory)
- Care was taken to avoid the possibility of 'double counting,' in the treatment of uncertainties when the models are used together
 - Avoid producing *unrealistic* or overly conservative estimates of fracture toughness.
- The approach adopted in proposed CC N-830-1 is to:
 - <u>Account</u> for the experimental error and material variability in the primary toughness vs. temperature models
 - <u>**Do not account</u>** for experimental error and material variability in the **linkage models** (T_{Kla} , T_{US}), which themselves are determined from the K_{Jc} , K_{la} , and J_{lc} , toughness vs. temperature data.</u>

Uncertainty Treatment in CC N-830-1

Primary Model Uncertainty

Epistemic Uncertainty Treatment

- Emperature
- The value of T_0 is adjusted by adding the 2σ , where the uncertainty, σ , on T_0 is given in ASTM E1921:

$$\sigma = \sqrt{\left(\frac{\beta^2}{r} + \sigma_{exp}^2\right)} \qquad T_{0(ADJ)} = T_0 + 2\sigma$$

- Aleatory Uncertainty Treatment
 - 5% LB curve taken to describe all toughness values ($K_{\rm Jc}$, $K_{\rm la}$, $J_{\rm lc}/J_{0.1}/J-R$)
 - "Bounding toughness curves for a **deterministic analysis** shall be generated from the equations in -4000 by using the values of p=0.05 and M_p =1.64. ."
 - Sampling on the distributions for each model simulates the uncertainty inherent in the property for use in probabilistic codes

Mean values of linkage models (T_{US} and $T_{\kappa_{la}}$) are used

Validation of Uncertainty Treatment: T₀-K_{la}

111 measured K_{Ia} values plotted as a function of T- T_{KIa} , where T_{KIa} is estimated from measured T_{0} values as follows:

 $T_{0(ADJ)} = T_0 + 2\sigma$

Validation of Uncertainty Treatment: T_0 - J_{lc}

Four data sets with large number of both K_{Jc} and J_{lc} data are examined to validate the $T_0 - J_{lc}$ uncertainty treatment:

- Midland Beltline (Unirradiated). T_{US} under-predicted by 0.3 °C.
- Midland Nozzle (Unirradiated). T_{US} over-predicted by 0.8 °C.
- Plate 02 (Unirradiated). $T_{\rm US}$ over-predicted by 5.2 °C.
- Weld 71W (Unirradiated). $T_{\rm US}$ over-predicted by 7.3 °C.

Validation of Uncertainty Treatment: T_0 - J_{lc}

Using the same four datasets, the position of T_{US} and the J_{Ic} model were determined for each material using both $T_{0(adj)}$ and the 2σ LB

$$T_{0(ADJ)} = T_0 + 2\sigma$$
 $T_{US} = b_{PF} + 0.84T_{0(ADJ)} + 2\sigma$

FAVOR

- Probabilistic code used to assess probability of crack initiation and through-wall cracking probability for RPV steels
- Used by NRC in the development of the alternative PTS rule (10 CFR 50.61a)
 - Extensive internal and external reviews
- Used subsequently by industry and NRC to assess emergent issues
 - BTP 5-3
 - Quasi-laminar flaws
- Used internationally
 - Taiwan
 - Japan
 - Belgium

Uncertainty Treatment in FAVOR

Uncertainties are defined as aleatory or epistemic

- Epistemic variables are sampled once for each simulated RPV run and thereafter held fixed. Resampled for next RPV.
- Aleatory variables (e.g. *K*_{lc}) provide the basis for estimating the probability of crack initiation/arrest for each time during a transient

Models are defined as primary or linkage

- Uncertainty is simulated by sampling from values within the defined distribution of each primary model
- Uncertainty simulation in the linkage models is mixed
 - Mean values are used for $T_{\rm US}$, ΔT_{30}
 - Uncertainty accounted for in $T_{\kappa_{la}}$ (ΔRT_{arrest})

PEAI

FAVOR Embrittlement Model

Summary and Conclusions

- Information flow through a code controls the cumulative impact of various sources of uncertainty on failure probabilities.
- Sub-models must be linked together appropriately to ensure that there is no distortion of the flow of information
- To avoid double counting of uncertainty contribution from various sources
 - Account for uncertainty in primary models (derived directly from data), but
 - Do NOT account for uncertainties in linkage models derived from primary models
 - Can result in excessive conservatism, or
 - Can result in non-physically realistic predictions of model outcomes
- Perhaps there is an analogy to complex human relationships?