Accounting for Uncertainty in Complex Relationships Presentation to the

Marjorie Erickson & Mark Kirk

erickson@peaiconsulting.com kirk@peaiconsulting.com

3rd International Seminar on Probabilistic Methodologies for Nuclear Applications

> Rockville, MD Oct 22-24, 2019

Phoenix Engineering **Associates** ImC_n

Presentation Outline

PEAI

Probabilistic Models & Codes

- **Probabilistic codes are comprised of:**
	- a set of models & sub models
	- linked by a framework that enables sampling
		- on distributed input variables and model parameters
		- to account for uncertainty contributions from various sources directly and explicitly.
- **Appropriate treatment of uncertainties is key to interpreting the outcomes**
	- Information flow through a code controls the cumulative impact of various sources of uncertainty on failure probabilities.
	- Sub-models must be linked together appropriately to ensure that there is no distortion of the flow of information
		- Avoid double counting of uncertainty contribution from key factors
		- Appropriately account for model bias

PFM Codes

• **Involve models to describe:**

•**Crack driving force defined by**

- environment
- loading
- geometry
- manufacturing

•**Material crack resistance defined by**

- strength
- toughness
- fatigue
- SCC

• **Treatment of uncertainties that represent some phenomena of interest**

• **Material crack resistance is the focus of this presentation**

Driving force ≤ material resistance

PEAI

Models of Material Resistance to Failure

- **Material resistance to through-wall cracking is characterized by various material properties**:
	- Strength
	- Fracture toughness
	- Fatigue and SCC initiation and growth rates
- **All of these properties are uncertain/distributed**
- **Many of these properties are correlated & the correlations are uncertain**
- **Models of properties and correlations should capture the uncertainty inherent in the data**

- **The behavior of** *all* **toughness properties of interest with hardening/ embrittlement is related and can be characterized by the reference temperature (***T***o)**
	- **Cleavage crack initiation (transition)**
	- **Stopping (arresting) a running cleavage crack**
	- **Ductile crack initiation (upper shelf)**
- **Example: Toughness curves for the most embrittled axial weld in a highly embrittlement plant**

 \rightarrow At beginning of life

- **The behavior of** *all* **toughness properties of interest with hardening/ embrittlement is related and can be characterized by the reference temperature (***T***o)**
	- **Cleavage crack initiation (transition)**
	- **Stopping (arresting) a running cleavage crack**
	- **Ductile crack initiation (upper shelf)**
- **Example: Toughness curves for the most embrittled axial weld in a highly embrittlement plant**
	- \rightarrow At beginning of life
	- \rightarrow At 40 years

- **The behavior of** *all* **toughness properties of interest with hardening/ embrittlement is related and can be characterized by the reference temperature (***T***o)**
	- **Cleavage crack initiation (transition)**
	- **Stopping (arresting) a running cleavage crack**
	- **Ductile crack initiation (upper shelf)**
- **Example: Toughness curves for the most embrittled axial weld in a highly embrittlement plant**
	- \rightarrow At beginning of life
	- \rightarrow At 40 years
	- \rightarrow At 60 years

- **The behavior of** *all* **toughness properties of interest with hardening/ embrittlement is related and can be characterized by the reference temperature (***T***o)**
	- **Cleavage crack initiation (transition)**
	- **Stopping (arresting) a running cleavage crack**
	- **Ductile crack initiation (upper shelf)**
- **Example: Toughness curves for the most embrittled axial weld in a highly embrittlement plant**
	- \rightarrow At beginning of life
	- \rightarrow At 40 years
	- \rightarrow At 60 years
	- à **At TWCF** » **10-6 / year**

Proposed ASME CC N-830-1

- **Recent advancements provide opportunities to adopt best estimate toughness models in the ASME Code**
	- Models for toughness vs temperature (*K*Jc, *K*Ia, *J*Ic/ *J*0.1/ *J-R)*
	- Models to account for systematic linkage between these quantities $(T_{\text{US}}$ and $T_{\text{K}_{\text{Ia}}})$
	- Models provide full statistical distributions, permitting estimation of mean and bounding curves.
- **CC N-830-1 proposes a direct- toughness approach**
	- Proposes use of MC-based suite of best estimate toughness models as alternative to current Appendix A & K methodology
	- **Proposed treatment of uncertainties is consistent with the data used in model development**

Uncertainty in N-830-1 Toughness Models

- The toughness metrics $(K_{\text{Jc}}, K_{\text{la}})$, and $J_{\text{Ic}}/J-R$ and the index temperatures (T_0, T_{Kla}) T_{US}) were derived from the same data and thus *reflect the same uncertainties*
	- associated with experimental error (**epistemic**), and
	- material variability (**aleatory**)
- **Care was taken to avoid the possibility of '***double counting***,' in the treatment of uncertainties when the models are used together**
	- Avoid producing *unrealistic* or overly conservative estimates of fracture toughness.
- **The approach adopted in proposed CC N-830-1 is to:**
	- **Account** for the experimental error and material variability in the **primary** toughness vs. temperature models
	- **Do not account** for experimental error and material variability in the **linkage models** (T_{Kla} , T_{US}), which themselves are determined from the K_{Jc} , K_{Ia} , and J_{Ic} , toughness vs. temperature data.

Uncertainty Treatment in CC N-830-1

Primary Model Uncertainty

• **Epistemic Uncertainty Treatment**

- Fracture Toughness **Fracture Toughness 100 MPa**Ö**mTUS To Temperature**
- $-$ The value of T_0 is adjusted by adding the 2 σ , where the uncertainty, σ , on T_0 **is given in ASTM E1921:**

$$
\sigma = \sqrt{\left(\frac{\beta^2}{r} + \sigma_{exp}^2\right)} \qquad T_{0(ADJ)} = T_0 + 2\sigma
$$

- **Aleatory Uncertainty Treatment**
	- $-$ 5% LB curve taken to describe all toughness values (K_{Jc} , K_{Ia} , $J_{\text{Ic}}/J_{0.1}/J$ -R)
		- "Bounding toughness curves for a **deterministic analysis** shall be generated from the equations in -4000 by using the values of $p=0.05$ and $M_p = 1.64$. ."
	- **Sampling on the distributions for each model simulates the uncertainty inherent in the property for use in probabilistic codes**

Mean values of linkage models (T_{US} **and** $T_{\text{K}_{\text{Ia}}}$ **) are used**

Validation of Uncertainty Treatment: T_0 - K_{1a}

111 measured K_{1a} **values plotted as a function of** $T - T_{K1a}$ **, where** T_{K1a} **is estimated from measured** *T***⁰ values as follows:**

 $T_{0(ADD)}=T_0+2\sigma$

PEAI

Validation of Uncertainty Treatment: T_0 **-J_{Ic}**

Four data sets with large number of both K_{Jc} and J_{lc} data are examined to **validate the** $T_0 - J_{1c}$ **uncertainty treatment:**

- Midland Beltline (Unirradiated). T_{US} under-predicted by 0.3 °C.
- Midland Nozzle (Unirradiated). T_{US} over-predicted by 0.8 °C.
- Plate 02 (Unirradiated). T_{US} over-predicted by 5.2 °C.
- Weld 71W (Unirradiated). T_{US} over-predicted by 7.3 °C.

Validation of Uncertainty Treatment: T_0 **-J_{Ic}**

Using the same four datasets, the position of T_{US} and the J_{IC} model were determined for each material using both $T_{0(\text{adj})}$ and the 2σ LB

$$
T_{0(ADJ)} = T_0 + 2\sigma \qquad T_{US} = b_{PF} + 0.84T_{0(ADJ)} + 2\sigma
$$

FAVOR

- Probabilistic code used to assess probability of crack initiation and through-wall cracking probability for RPV steels
- Used by NRC in the development of the alternative PTS rule (10 CFR 50.61a)
	- Extensive internal and external reviews
- Used subsequently by industry and NRC to assess emergent issues
	- $-$ BTP 5-3
	- Quasi-laminar flaws
- Used internationally
	- Taiwan
	- Japan
	- Belgium

Uncertainty Treatment in FAVOR

Uncertainties are defined as aleatory or epistemic

- **Epistemic variables** are sampled once for each simulated RPV run and thereafter held fixed. Resampled for next RPV.
- **Aleatory variables** (e.g. K_{lc}) provide the basis for estimating the probability of crack initiation/arrest for each time during a transient

Models are defined as primary or linkage

- Uncertainty is simulated by sampling from values within the defined distribution of each primary model
- Uncertainty simulation in the linkage models is mixed
	- Mean values are used for T_{US} , ΔT_{30}
	- Uncertainty accounted for in T_{KIa} $(\Delta RT_{\text{arrest}})$

FAVOR Embrittlement Model

Summary and Conclusions

- **Information flow through a code controls the cumulative impact of various sources of uncertainty on failure probabilities.**
- **Sub-models must be linked together appropriately to ensure that there is no distortion of the flow of information**
- **To avoid double counting of uncertainty contribution from various sources**
	- **Account for uncertainty in primary models (derived directly from data), but**
	- **Do NOT account for uncertainties in linkage models derived from primary models**
		- **Can result in excessive conservatism, or**
		- **Can result in non-physically realistic predictions of model outcomes**
- **Perhaps there is an analogy to complex human relationships?**