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Probabilistic
Models & Codes

 Probabilistic codes are comprised of:
— a set of models & sub models
— linked by a framework that enables sampling

« on distributed input variables and model
parameters

» to account for uncertainty contributions
from various sources directly and explicitly.

 Appropriate treatment of uncertainties is key
to interpreting the outcomes

— Information flow through a code controls the
cumulative impact of various sources of
uncertainty on failure probabilities.

— Sub-models must be linked together
appropriately to ensure that there is no
distortion of the flow of information

» Avoid double counting of uncertainty
contribution from key tfactors

* Appropriately account for model bias
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Models of Material
Resistance to
Failure

Material resistance to through-wall R
cracking is characterized by
various material properties:

— Strength
— Fracture toughness

— Fatigue and SCC initiation and
growth rates

All of these properties are
uncertain/distributed

Many of these properties are
correlated & the correlations are
uncertain
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Focusing on Fracture Toughness:
An lllustration of Linked Toughness Distributions
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« Example: Toughness curves for
the most embrittled axial weld in a
highly embrittlement plant

-> At beginning of life
-> At 40 years
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« Example: Toughness curves for
the most embrittled axial weld in a
highly embrittlement plant

-> At beginning of life
-> At 40 years
-> At 60 years
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« Example: Toughness curves for
the most embrittled axial weld in a
highly embrittlement plant

-> At beginning of life
-> At 40 years

-> At 60 years
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| Lognormal Model
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Proposed ASME CC N-830-1

* Recent advancements provide opportunities to adopt best estimate toughness

models in the ASME Code

— Models for toughness vs temperature (K., Kia, Jic/ Jo 1/ J-R)

— Models to account for systematic linkage between these quantities

(TUS and TK|a)

— Models provide full statistical distributions, permitting estimation of mean

and bounding curves.

« CC N-830-1 proposes a direct-
toughness approach

— Proposes use of MC-based suite
of best estimate toughness
models as alternative to current
Appendix A & K methodology

— Proposed treatment of
uncertainties is consistent
with the data used in model
development
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Uncertainty in N-830-1 Toughness
Models

 The toughness metrics (K|, K., and J,.//J-R) and the index temperatures (T, T,
Tys) were derived from the same data and thus reflect the same uncertainties

— associated with experimental error (epistemic), and
— material variability (aleatory)

- Care was taken to avoid the possibility of ‘double counting,’ in the treatment of
uncertainties when the models are used together

— Avoid producing unrealistic or overly conservative estimates of fracture toughness.
 The approach adopted in proposed CC N-830-1 is to:

— Account for the experimental error and material variability in the primary
toughness vs. temperature models

— Do not account for experimental error and material variability in the linkage
models ( Ty, Tys), which themselves are determined from the K, K,,, and J,

toughness vs. temperature data.




Uncertainty Treatment ;|

] g’ A

in CC N-830-1 :
Primary MOdEl Uncertainty E Temperature >

 Epistemic Uncertainty Treatment

— The value of T is adjusted by adding the 2o, where the uncertainty, o, on T,
is given in ASTM E1921:

2
C = \/(ﬁ_ + ngp) TO(AD]) = TO + 20

r
* Aleatory Uncertainty Treatment

— 5% LB curve taken to describe all toughness values (K|, K., J\.//[J; 1/J-R)

 “Bounding toughness curves for a deterministic analysis shall be generated from the
equations in -4000 by using the values of p=0.05 and M, =1.64. ”

— Sampling on the distributions for each model simulates the uncertainty
inherent in the property for use in probabilistic codes

Mean values of linkage models (7,5 and Tk,,) are used



Validation of Uncertainty Treatment: T,-K,

111 measured K|, values plotted as a function of T-T,.,, where T, is estimated from
measured T, values as follows:
TO(AD]) = TO + 20

Tkia = Topy) + 44.97exp[—0.00613T o 4p))]
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Validation of Uncertainty Treatment: T,-J,.

Four data sets with large number of both K. and J,;. data are examined to
validate the T, — J,. uncertainty treatment:

— Midland Beltline (Unirradiated). Tys under-predicted by 0.3 °C.

— Midland Nozzle (Unirradiated). Tg over-predicted by 0.8 °C.

— Plate 02 (Unirradiated). Ts over-predicted by 5.2 °C.

— Weld 71W (Unirradiated). Tyg over-predicted by 7.3 °C.
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Validation of Uncertainty Treatment: T,-J,.

Using the same four datasets, the position of T;s and the J,. model were
determined for each material using both T4 and the 2c LB
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FAVOR

* Probabilistic code used to assess ot
probability of crack initiation and
through-wa” CraCk|ng prObabmty for Fracture Analysis of Vessels — Oak Ridge
FAVOR, v16.1, Computer Code: Theory and
RPV Steels Implementation of Algorithms, Methods, and

Correlations

 Used by NRC in the development of
the alternative PTS rule (10 CFR E
50.61a) =

— Extensive internal and external reviews

* Used subsequently by industry and
NRC to assess emergent issues

— BTP5-3 N mmenon | | Tegan
. . H.B. Klasky
— Quasi-laminar flaws e e
» Used internationally QA RIDOE NATIONAL LASORATORY
— Taiwan [ML16273A032, ...A033, ... A034]
— Japan

— Belgium m
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Uncertainty Treatment in FAVOR

Uncertainties are defined as
aleatory or epistemic

» Epistemic variables are sampled
once for each simulated RPV run and
thereafter held fixed. Resampled for
next RPV.

» Aleatory variables (e.g. K|.) provide
the basis for estimating the probability
of crack initiation/arrest for each time

during a transient

Models are defined as
primary or linkage
» Uncertainty is simulated by sampling

from values within the defined
distribution of each primary model

» Uncertainty simulation in the linkage
models is mixed
 Mean values are used for Tys, AT3g

« Uncertainty accounted for in Tk,
(ARTarrest)
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FAVOR Embrittiement Model
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Uncertainty
IS accounted
for in linkage
models
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Summary and Conclusions

 Information flow through a code controls the cumulative impact of
various sources of uncertainty on failure probabilities.

« Sub-models must be linked together appropriately to ensure that there
is no distortion of the flow of information

* To avoid double counting of uncertainty contribution from various
sources

— Account for uncertainty in primary models (derived directly from data), but

— Do NOT account for uncertainties in linkage models derived from primary
models

Can result in excessive conservatism, or

Can result in non-physically realistic predictions of model
outcomes

« Perhaps there is an analogy to complex human relationships?



