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• Probabilistic codes are comprised of:
– a set of models & sub models
– linked by a framework that enables sampling
• on distributed input variables and model 

parameters 

• to account for uncertainty contributions 
from various sources directly and explicitly.

• Appropriate treatment of uncertainties is key 
to interpreting the outcomes

– Information flow through a code controls the 
cumulative impact of various sources of 
uncertainty on failure probabilities.

– Sub-models must be linked together 
appropriately to ensure that there is no 
distortion of the flow of information

• Avoid double counting of uncertainty 
contribution from key factors

• Appropriately account for model bias
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PFM Codes
• Involve models to 

describe:
• Crack driving force defined by

• environment
• loading
• geometry
• manufacturing 

• Material crack resistance 
defined by

• strength
• toughness 
• fatigue
• SCC

• Treatment of uncertainties
that represent some 
phenomena of interest

• Material crack resistance 
is the focus of this 
presentation

Driving force ≤ material resistance
or

Toperating≥ Tcleavage toughness
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Actual 
Fracture 
Toughness
Values
(CC-N830-1 
models)

op
er

at
in

g 
te

m
pe

ra
tu

re

operating pressure
P-T Limit on total applied KI per 

ASME SC-XI App-G + Regulations

Temperature
am

bi
en

t 
te

m
pe

ra
tu

re
Variations of applied KI with 
time for actual plant cool-

downs and realistic flaw sizes 

Conservatisms in existing practice 
constrict operating window

tim
eincreasing

Allowable operating 
window

KI
ASME KIc Curve 

Operation Permitted 
in this Region

Total available operating 
temperature window



Temperature

F
ra

ct
u

re
 T

o
u

g
h

n
es

s

To

TUS
100 MPaÖm

Models of Material 
Resistance to 
Failure
• Material resistance to through-wall 

cracking is characterized by 
various material properties:
– Strength
– Fracture toughness
– Fatigue and SCC initiation and 

growth rates
• All of these properties are 

uncertain/distributed
• Many of these properties are 

correlated & the correlations are 
uncertain

• Models of properties and 
correlations should capture the 
uncertainty inherent in the data

0

50

100

150

200

250

0 100 200 300 400

D  Yield Strength  [MPa]

D
T o

  [
o C

]

Weld Fit  (0.69 C/MPa)
Plate Fit  (0.67 C/MPa)
Forging Fit (0.75 C/MPa)
Weld
Plate
Forging

 

St
re

ss
 In

te
ns

ity
 fa

ct
or

 (M
Pa

m
1/

2 )

Yield strength (MPa)



• The behavior of all toughness 
properties of interest with 
hardening/ embrittlement is related 
and can be characterized by the 
reference temperature (To) 
– Cleavage crack initiation 

(transition)
– Stopping (arresting) a running 

cleavage crack
– Ductile crack initiation (upper 

shelf)

• Example: Toughness curves for 
the most embrittled axial weld in a 
highly embrittlement plant

à At beginning of life

To= -85°CTo= +63°CTo= +72°CTo= +126°C

0

100

200

300

-300 -200 -100 0 100 200 300

Temperature  [ oC]

Fr
ac

tu
re

 T
ou

gh
ne

ss
  [

M
P

a*
m

0.
5 ]

Ductile 
Initiation

Cleavage 
Arrest

Cleavage 
Initiation

Focusing on Fracture Toughness:
An Illustration of Linked Toughness Distributions

P
W

R
 O

pe
ra

tin
g 

Te
m

p.

M
in

 T
em

p.
 fo

r 
S

ec
on

da
ry

 S
id

e 
B

re
ak

M
in

 T
em

p.
 fo

r 
P

ri
m

ar
y 

S
id

e 
B

re
ak



• The behavior of all toughness 
properties of interest with 
hardening/ embrittlement is related 
and can be characterized by the 
reference temperature (To) 
– Cleavage crack initiation 

(transition)
– Stopping (arresting) a running 

cleavage crack
– Ductile crack initiation (upper 

shelf)

• Example: Toughness curves for 
the most embrittled axial weld in a 
highly embrittlement plant

à At beginning of life
à At 40 years

To= -85°CTo= +63°CTo= +72°CTo= +126°C
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• The behavior of all toughness 
properties of interest with 
hardening/ embrittlement is related 
and can be characterized by the 
reference temperature (To) 
– Cleavage crack initiation 

(transition)
– Stopping (arresting) a running 

cleavage crack
– Ductile crack initiation (upper 

shelf)

• Example: Toughness curves for 
the most embrittled axial weld in a 
highly embrittlement plant

à At beginning of life
à At 40 years
à At 60 years

To= -85°CTo= +63°CTo= +72°CTo= +126°C
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• The behavior of all toughness 
properties of interest with 
hardening/ embrittlement is related 
and can be characterized by the 
reference temperature (To) 
– Cleavage crack initiation 

(transition)
– Stopping (arresting) a running 

cleavage crack
– Ductile crack initiation (upper 

shelf)

• Example: Toughness curves for 
the most embrittled axial weld in a 
highly embrittlement plant

à At beginning of life
à At 40 years
à At 60 years
à At TWCF » 10-6 / year

To= -85°CTo= +63°CTo= +72°CTo= +126°C
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PFM 10

Crack Initiation Toughness
KJc

Upper Shelf
Toughness
JIc

-200

0

200

400

600

800

1000

-150 -100 -50 0 50 100 150 200 250 300

Temperature  [
o
C]

D
J I

c =
 J

Ic
 -

 J
Ic

(2
88

) 
 [

k
J

/m
2
]

RPV Weld (U)

RPV Weld (I)

RPV Plate (U)

RPV Plate (I)

RPV Forging (U)

HSLA Plate

Mild Steel Plate

ZA Fit to Data, alpha=1.75mm

2.5% Bound

97.5% Bound

Crack Arrest
Toughness
KIa

Crack Arrest Toughness:
KIa Master Curve

KIa MASTER CURVE

KIa = 30 + 70 × exp(0.019×(T-TKIa))

-150 -100 -50 0 50
0

50

100

150

200

250

95 % 5 %

 72W T KIa=-13 oC

 72W Irr. T KIa=+76 oC

 73W T KIa=-14 oC

 73W Irr. T KIa=+70 oC

 PTSE 1 T KIa=+108 oC)

 PTSE 2 T KIa=+70 oC

 15X2MØA T KIa=+17 oC

 18X2MØA T KIa=+47 oC

 HSST 02 T KIa=+24 oC

K
Ia
 [M

P
aÖ

m
]

T-TKIa [°C]

s = 18 %

 

Crack Initiation 
Toughness:
KJc Master Curve
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Crack Arrest Toughness

KIa

Crack Arrest Toughness:
KIa Master Curve

KIa MASTER CURVE

KIa = 30 + 70 × exp(0.019×(T-TKIa))
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Upper Shelf Toughness: 
JIc Master Curve
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Proposed ASME CC N-830-1

• CC N-830-1 proposes a direct-
toughness approach 
– Proposes use of MC-based suite 

of  best estimate toughness 
models as alternative to current 
Appendix A & K methodology

– Proposed treatment of 
uncertainties is consistent 
with the data used in model 
development

• Recent advancements provide opportunities to adopt best estimate toughness 
models in the ASME Code
– Models for toughness vs temperature (KJc, KIa, JIc/ J0.1/ J-R)

– Models to account for systematic linkage between these quantities                    
(TUS and TKIa)

– Models provide full statistical distributions, permitting estimation of mean 
and bounding curves.



Uncertainty in N-830-1 Toughness 
Models
• The toughness metrics (KJc, KIa, and JIc/J-R) and the index temperatures (T0, TKIa, 

TUS) were derived from the same data and thus reflect the same uncertainties

– associated with experimental error (epistemic), and 
– material variability (aleatory)

• Care was taken to avoid the possibility of ‘double counting,’ in the treatment of 
uncertainties when the models are used together 

– Avoid producing unrealistic or overly conservative estimates of fracture toughness.  

• The approach adopted in proposed CC N-830-1 is to:

– Account for the experimental error and material variability in the primary
toughness vs. temperature models 

– Do not account for experimental error and material variability in the linkage 
models (TKIa, TUS), which themselves are determined from the KJc, KIa, and JIc, 
toughness vs. temperature data.



Primary Model Uncertainty
• Epistemic Uncertainty Treatment
– The value of T0 is adjusted by adding the 2s, where the uncertainty, s, on T0

is given in ASTM E1921:

• Aleatory Uncertainty Treatment
– 5% LB curve taken to describe all toughness values (KJc, KIa, JIc/J0.1/J-R)
• “Bounding toughness curves for a deterministic analysis shall be generated from the 

equations in -4000 by using the values of p=0.05 and Mp =1.64. .”

– Sampling on the distributions for each model simulates the uncertainty 
inherent in the property for use in probabilistic codes

Mean values of linkage models (TUS and TKIa) are used

Uncertainty Treatment 
in CC N-830-1
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Validation of Uncertainty Treatment: T0-KIa

111 measured KIa values plotted as a function of T-TKIa, where TKIa is estimated from 
measured T0 values as follows: 

Approximately 95% bounding is 
achieved using the 

mean linkage model: T0ADJ - KIa
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Validation of Uncertainty Treatment: T0-JIc
Four data sets with large number of both KJc and JIc data are examined to 
validate the T0 – JIc uncertainty treatment:

– Midland Beltline (Unirradiated).  TUS under-predicted by  0.3 °C.
– Midland Nozzle (Unirradiated).  TUS over-predicted by 0.8 °C.
– Plate 02 (Unirradiated).  TUS over-predicted by 5.2 °C.
– Weld 71W (Unirradiated).  TUS over-predicted by 7.3 °C.

Approximately 95% 
bounding is achieved 
using the mean linkage 
models: T0 – JIc

!"# = %&' + 0.84! ).(012

! ).(012 = !. + 24

The position of KJc and 
the JIc models were 
determined for each 
material using:



Validation of Uncertainty Treatment: T0-JIc
Using the same four datasets, the position of TUS and the JIc model were 
determined for each material using both T0(adj) and the 2s LB

! )#(%&' = !# + 2+ !,- = ./0 + 0.84! )#(%&' + 5+

Bounding is now overly 
conservative, and in 
some cases does not 
make physical sense 
(predictions of –JIc)
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FAVOR 
• Probabilistic code used to assess 

probability of crack initiation and 
through-wall cracking probability for 
RPV steels

• Used by NRC in the development of 
the alternative PTS rule (10 CFR 
50.61a)
– Extensive internal and external reviews

• Used subsequently by industry and 
NRC to assess emergent issues
– BTP 5-3
– Quasi-laminar flaws

• Used internationally
– Taiwan
– Japan
– Belgium

[ML16273A032, …A033, … A034]
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flow 

diagram



Uncertainty Treatment in FAVOR
Uncertainties are defined as 
aleatory or epistemic

• Epistemic variables are sampled 
once for each simulated RPV run and 
thereafter held fixed.  Resampled for 
next RPV.

• Aleatory variables (e.g. KIc) provide 
the basis for estimating the probability 
of crack initiation/arrest for each time 
during a transient 

Models are defined as 
primary or linkage

• Uncertainty is simulated by sampling 
from values within the defined 
distribution of each primary model

• Uncertainty simulation in the linkage 
models is mixed
• Mean values are used for TUS, DT30

• Uncertainty accounted for in TKIa
(DRTarrest)
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Summary and Conclusions
• Information flow through a code controls the cumulative impact of 

various sources of uncertainty on failure probabilities.
• Sub-models must be linked together appropriately to ensure that there 

is no distortion of the flow of information
• To avoid double counting of uncertainty contribution from various 

sources
– Account for uncertainty in primary models (derived directly from data), but
– Do NOT account for uncertainties in linkage models derived from primary 

models
• Can result in excessive conservatism, or
• Can result in non-physically realistic predictions of model 

outcomes

• Perhaps there is an analogy to complex human relationships?


