Comparison of Circumferential Flaw Growth of xLPR vs MRP-216 R1 FEA Natural Flaw Growth

Craig Harrington EPRI

Matt Wolfson, Markus Burkardt, and Glenn White Dominion Engineering, Inc.

3rd International Seminar on Probabilistic Methodologies for Nuclear Applications Rockville, MD October 22-24, 2019

Image: Second system
Image: Second system

Image: Second

MRP-216R1 Context

- Addressed the potential need for accelerated refueling cycles or midcycle outages in response to crack indications in pressurizer nozzle Alloy 82/182 dissimilar metal butt welds at Wolf Creek (October 2006)
- By demonstrating leak detection as a means to preclude rupture, MRP-216 R1 successfully addressed the short-term safety concern of potential circumferential cracking of other nozzles not yet effectively examined or mitigated across other plants
- MRP-216 R1 utilized FEACrack, ANSYS, and PICEP to perform crack growth, stability, and leak rate simulations from initiation until critical size
- Advanced FEA (AFEA) to simulate "natural" flaw shape development allowed removal of unnecessary conservatism that surface flaws retain a semi-elliptical profile while growing

Previous xLPR Benchmarking with FEA

- xLPR was benchmarked to AFEA as part of the Framework acceptance testing (2016) (xLPR-STRR-FW-Acceptance V1)
- Several axial cracks from industry OE were modeled using both deterministic xLPR and AFEA
 - VC Summer Unit 1 (2000)
 - North Anna Unit 1 (2012)
- Crack shape as a function of time was compared between the two modeling approaches

Previous xLPR Benchmarking with FEA (cont'd) VC Summer Case

Similar growth lines near edge of weld

MRP-216R1 vs xLPR Crack Shape/Growth

MRP-216R1

- FEA used to calculate crack shape development
- K-distribution is calculated at each point along the crack profile
- Growth at each point normal to the crack front determined by K at that location and MRP-115 crack growth equation
- Transition to TW occurs at 93% depth
- Shape of new TW crack taken as the final surface flaw profile but with areas where less than 10% of wall thickness remains converted to an open crack face

xLPR

- FORTRAN module used to implement MRP-115 crack growth equation
- K is calculated at ID surface tips and deepest point (or surface tips for TW flaw)
- Shape of part depth flaws are always semielliptical
- Flaws transition to TW at 95% depth
- Initial TW flaws are trapezoidal shape
- Correction factors are applied to non-ideal TW flaws based on FEA simulation; flaws tend towards ideal shape
- Nearly ideal flaws will "snap" into ideal flaws

MRP-216 Example Crack Shapes

xLPR Example Crack Shapes

Semi-elliptical Surface

Transitioning (Trapezoid)

Idealized Through-wall

Taken from xLPR-SDD-Coalescence V3 Table 5

Types of Comparison

- Two xLPR benchmark cases:
 - Case 1: matching initial surface flaw length and depth
 - Case 2: matching initial TW flaw ID and OD length
- Crack profile at select time points
- Surface crack phase (Case 1 only)
 - Crack depth vs Time
 - ID normalized crack length vs Time
- Through-wall crack phase (Cases 1 and 2)
 - ID normalized crack length vs Time
 - OD normalized crack length vs Time
 - Crack opening displacement (COD) vs Time
 - Crack opening area (COA) vs Time
 - Leak rate vs Time

MRP-216R1 Case 17b (1 of 3)

- Chosen as example of growth from circumferential surface flaw to TW flaw useful for benchmarking comparison
- Pressurizer surge nozzle Alloy 82/182 butt weld
- OD of 15 inches
- Wall thickness of 1.58 inches
- Loading:
 - Pressure = 2,235 psi
 - Membrane Stress (including pressure end cap force) = 3.72 ksi
 - Bending Stress = 13.57 ksi
 - Weld residual stress (shown on next slide)

MRP-216R1 Case 17b (2 of 3)

Figure 7-7 of MRP-216 R1

MRP-216R1 Case 17b (3 of 3)

- Initial flaw:
 - Aspect ratio 2c/a = 21
 - Depth = 26% through-wall
 - Shape = "natural" based on previous AFEA simulation
- Crack growth per MRP-115 for Alloy 182 weld metal

$$-C_{75th,650^{\circ}F} = 5.372 \cdot 10^{-7} \frac{\frac{in}{hr}}{(ksi - in^{0.5})^{1.6}} \text{ for CR}$$

- K exponent = 1.6

xLPR Time Step Selection

Crack Profile Comparison - xLPR Case 1 (1 of 2)

Crack Profile Comparison - xLPR Case 1 (2 of 2)

Surface Crack Comparison – Flaw Length and Depth (Case 1)

TW Crack Comparison – ID and OD Flaw Lengths (Case 1)

TW Crack Comparison – Crack COD and COA (at OD) (Case 1)

TW Crack Comparison – Leak Rate (Case 1)

xLPR Leak Rate Modelling

www.epri.com

19

Crack Profile Comparison - xLPR Case 2

TW Crack Comparison – ID and OD Flaw Lengths (Case 2)

TW Crack Comparison – Crack COD and COA (at OD) (Case 2)

TW Crack Comparison – Leak Rate (Case 2)

23

Summary of Comparison

	MRP-216 (17b)	xLPR Case 1	xLPR Case 2
Time to TW (yrs)	1.20	1.18	-
Normalized ID Length @ TW	38.5%	32.8%	38.2%
Normalized OD Length @ TW	7.18%	6.71%	6.71%
Crack Cross-section @ TW	24.0%	18.2%	20.6%
Leak Rate @ TW (gpm)	2.55	4.98	7.19
Normalized ID Length @ Critical Size	42.2%	43.1%	44.1%
Normalized OD Length @ Critical Size	34.6%	43.1%	44.1%
Time to Critical Size (yrs)	1.56	1.46	-

Discussion of Example Cases

- Close agreement obtained for depth progression of surface flaw, even given difference in initial flaw profile
- Reasonable agreement in flaw length also obtained, especially when xLPR solution is temporally converged
 - Observed difference in length progression due to differences in ID crack length at TW penetration, crack "fullness," and K solution
 - K correction factor of xLPR for ID tips of trapezoidal flaw appears to overcompensate
- Leak rate "plateau" behavior of xLPR not observed in PICEP simulations

Conclusions

- Trapezoidal flaw approach of xLPR provides much more realistic crack growth and leak rate behavior than idealized TW flaws
- K solutions of xLPR appear to be accurate
- As expected, modest differences in flaw dimensions and profile do lead to some differences in subsequent crack development and leak rate

Together...Shaping the Future of Electricity

