SENSITIVITY AND UNCERTAINTY ANALYSES FOR PROBABILISTIC LBB ANALYSES: METHODS AND APPLICATIONS

2nd International Seminar on Probabilistic Methodologies for Nuclear Applications, October 25-26, 2017, Ottawa, Ontario, Canada

Cédric J. Sallaberry, Robert E. Kurth, Frederick W. Brust, Elizabeth A. Kurth-Twombly

Engineering Mechanics Corporation of Columbus (Emc²) 3518 Riverside Drive - Suite 202 Columbus, OH 43221-1735 Phone: (614) 459-3200 Fax: (614) 459-6800

Outline

- xLPR presentation
- Uncertainty Characterization
- Uncertainty Propagation
- Output uncertainty and sensitivity analyses
- Conclusion

xLPR Presentation

- **xLPR** : Extremely Low Probability of **R**upture
- Conjoint development between US-NRC and EPRI
- Assesses probability of rupture in nuclear piping systems but not limited to this particular outcome: a large number of other outputs are considered (first crack occurrence, first leakage, leak rate, increase in leaking ...)
- Develop as modular and flexible with large number of options:
 - Two cracks orientation : Axial and circumferential
 - **Two source of cracking** : PWSCC and Fatigue
 - Many models : Initiation, Growth, Coalescence, Transition, Stability, COD, leak rate...
 - Several alternative options: Mechanical (MSIP, Overlay, Inlay) and chemical (Zinc addition, Hydrogen concentration) mitigations, In Service Inspection, Leak
 Rate detection,...

xLPR v2.0 code (1/2) – large and complex code

Multi layer code with many interactions

xLPR v2.0 code (2/2) – large and complex code

• Each DLL element in the code correspond to a module with many lines of code with specific physical concepts and assumptions

- This complexity translates to the user in the input workbook:
 - More than 600 module input, parameters, scenarios options
 - Most of them can be **uncertain**

Uncertainty Characterization

- Model uncertainty is captured via model parameters or options to use different models (initiation)
- Input and parameters uncertainty represented within a probabilistic framework.
- User can characterize each input and model's nature (constant or uncertain with distinction between aleatory and epistemic) then associate a <u>nominal</u> value as well as a <u>distribution</u>

		•	•			•				
	Pre-Mitigation (5101-5199)									
5101	Log reg intercept param, beta_0 (circ)		Aleatory	no	0.5	5.41	NORMAL	5.41	3.64	
5102	Log reg slope param, beta_1 (circ)		Aleatory	no	0.5	0.86	NORMAL	0.86	6.02	
5103	Log reg intercept param, beta_0 (axial)		Aleatory	no	0.5	2.5	NORMAL	2.5	0.51	
5104	Log reg slope param, beta_1 (axial)		Aleatory	no	0.5	0.82	NORMAL	0.82	1.4	
5105	Depth-sizing bias term, a (circ)		Aleatory	no	0.5	0.018	NORMAL	0.018	0.017	
5106	Depth-sizing slope term, b (circ)		Aleatory	no	0.5	0.971	NORMAL	0.971	0.029	
5107	Depth-sizing bias term, a (axial)		Aleatory	no	0.5	0.007	NORMAL	0.007	0.011	
5108	Depth-sizing slope term, b (axial)		Aleatory	no	0.5	0.984	NORMAL	0.984	0.028	
5109	Sigma_depth (circ.)		Constant	no	0.5	0.04	DISCRETE	1	1	0.04
5110	Sigma_depth (axial)		Constant	no	0.5	0.066	DISCRETE	1	1	0.066
5111	Small flaw threshold, x_Small,Eval		Constant	no	0.5	0.1	DISCRETE	1	1	0.1
5112	Depth lower bound, x_LB		Constant	no	0.5	0.1	DISCRETE	1	1	0.1
5113	Depth repair threshold, x_TH		Constant	no	0.5	0	DISCRETE	1	1	0
	During and Post-Mitigation (5201-5299)									
5201	Depth repair threshold, x_TH (during)		Constant	no	0.5	0	DISCRETE	1	1	0
5202	Depth repair threshold, x_TH (post)		Constant	no	0.5	0	DISCRETE	1	1	0

Input distributions / Correlation

- Distributions based on information gathered by specifically tasked group (Input Group):
 - Distribution fitting using collected data when large number of data available
 - Distribution fitting and expert elicitation when small number (<10) data available
 - Expert elicitation when no data available.
- Realistic input set requires correlation control when inputs varies accordingly (e.g., Yield Strength and Ultimate Strength of selected material)
 - Due to size of problem (more than 500 inputs) hard wired correlations (user can select correlation value)
 - Rank correlation implemented. Treated between two selected variables and not as a whole large matrix

CORREL	ATIONS				
ID	name	ID	name	location	(rank) correlation
2594	Peak-to-Valley ECP Ratio, P-1	2595	Charact Width of Peak vs ECP, c	PWSCC growth properties	0.714
2551	Weibull Vertical Intropt Error, EpsC	2552	General Weibull Slope, Beta	PWSCC initiation	-0.905
2525	Strain Threshold, STH	2528	Co	Fatigue Initiation	1
2592	Comp-to-Comp Variab Factor, fcomp	2543	Multiplier proport. Const. A (DM1)		0
2592	Comp-to-Comp Variab Factor, fcomp	2547	Multiplier proport. Const B (DM2)	PWSCC growth/init	0
2592	Comp-to-Comp Variab Factor, fcomp	2551	Weibull Vertical Intropt Error, EpsC		0
2501	Yield Strength, Sigy	2502	Ultimate Strength, Sigu		0.709
			-	General Properties	
2506	Material Init J-Resistance, Jic	2507	Material Init J-Resist Coef, C		0

Materials, Structural Integrity and Reliability Solutions Through Innovative Engineering

 $=\mathbf{m}c^2$

More complex uncertainty representation - WRS

- Uncertainty through the thickness
- Smoothness of curve

 $\leq mc^2$

 Integral over thickness = 0 for axial WRS (equilibrium condition)

- Average standard deviation
- "adapted" correlation
- Construction of multiple profile and selection of profile closest to equilibrium

More complex uncertainty representation - WRS

- WRS representation is directed by the following constraints:
 - Linear interpolation between 26 values through the thickness so that Universal Weight Function can be used
 - Uncertainty represented at each of the 26 locations
 - Uncertainty between the location needs to be correlated to avoid a sawtooth pattern
 - For axial WRS (used for circumferential cracks initiation and growth) axisymmetric conditions requires equilibrium (WRS over thickness integrates to zero).
- Approach used to represent uncertainty conditional on all the above requirements:
 - Average standard deviation through the thickness
 - Representation of uncertainty with normal distributions only
 - Estimate of correlation between point globally
 - Varying correlation value based on mean value for axial WRS
 - Sampling of 100 different profiles and select the one with integral closest to zero for axial WRS

Uncertainty Propagation

- Large number of uncertain inputs: more than 500 with some also spatially varying
- Several outputs of interest: probability of first crack occurrence over time and first leakage (for circ. crack and axial crack separately and combined), probability of pipe rupture, of Loss Of Coolant Accident (LOCA) ...
- Optimization and Derivation based methods would be *initially* either too costly due to the size of the problem or would require to make some assumption
- Sampling-based methods (aka Monte Carlo methods) preferred method of uncertainty propagation
- Inputs are sampled by sampling from uniform distribution and use inverse CDF for each input distribution

 $=mc^2$

Monte Carlo strategies

Three Monte Carlo techniques are available in xLPR

- Simple Random Sampling (SRS) : regular Monte Carlo technique sample size can be expanded easily if convergence not reached
- Latin Hypercube Sampling (LHS): with dense stratification of each input for better mono-dimensional coverage – variance in the estimate usually reduced compared to SRS
- Discrete Probability Distribution (DPD): with discretization of input reducing monodimensional coverage for better multi-dimensional coverage.

• All techniques compatible with

- Correlation control
- Separation epistemic/aleatory
- Use of importance Sampling
- Representation with many possible distribution types

Monodimensional coverage (left – SRS ; Middle LHS ; right DPD)

Multi dimensional coverage (left SRS ; middle LHS ; right DPD)

Importance Sampling

- Importance Sampling allows to focus in the region of the input space of greater importance (e.g., leading to more rupture).
- Works by "biasing" the selecting distribution (increasing the density) around an area of interest to sample more value in this region
- Each realization is weighted to reflect the initial distribution
- Requires to know which inputs and which values for these inputs are important

Epistemic and Aleatory uncertainty

- Aleatory uncertainty represent randomness of (usually future) events. Cannot be reduced. Represents the risk of having adverse condition
- Epistemic uncertainty represents the lack of knowledge toward a value supposed to be fixed but poorly understood. It usually can be reduced thanks to more research, experiment or gathering more data. It represent the uncertainty over the risk
- Several risk analyses keep the distinction between aleatory and epistemic uncertainty to gain more insights in the system under consideration.
- When Monte-Carlo sampling techniques are used, the separation is generated via a nested loop with the outer loop used to sample epistemic uncertainty and inner loop the aleatory uncertainty

smc.

Output Uncertainty Analysis

- The purpose of uncertainty analysis is to summarize output of interest in a comprehensive way that helps and supports any decision making
- Indicator are both quantitative (comparison with respect to a threshold value, estimate of uncertainty) and qualitative (graphical representation)

Distinction between relative difference vs. absolute difference Distinction between relative difference vs. absolute difference Distinction between relative difference vs. absolute difference Distinction between relative difference vs. absolute difference

Output Sensitivity Analysis – traditional approach

- Purpose: understand how the input uncertainty affects the output uncertainty and rank inputs by importance
- Traditional approach include Stepwise (rank) regression : construction of linear/monotonic model and scatterplots
- Works 60% to 80% of the time as most of the input influence is monotonic
- However, mitigation, human interaction may create non-monotonic influence (obvious cases detected)
- And it is common to have conjoint influence
- In this case stepwise regression (monotonic and additive) is not sufficient.

	Rai	Rank Regression				
Final R ²	0.83					
Input	R ² inc.	R ² cont.	SRRC			
ADM1C1	0.86	0,06	-0,52			
AMULTDMI	0.80	0.14	-0,34			
ADM1C2	0.82	0.01	-0,10			
AXIALWRS	0.82	0.01	-0.07			
ADM1C3	0.83	0.01	-0,06			
FFLAWA5	0.83	0.00	0.01			
ADM1C4	0,83	0.00	-0.03			
AMD1A2	0.83	0.00	-0.03			
HOOPWRS	0.83	0.00	0.01			
ADM1A3	0.83	0.00	-0.02			
EFPY	0.83	0.00	-0.01			
ADM1C5	0.83	0.00	-0.01			
ADM1A1	-	-	-			
COA5	-	-	-			
FFLAWC4	-	-	-			
STHA5	-	-	-			
STHMULT	-	-	-			

Output Sensitivity Analysis - ANOVA

- Other regressions can capture non-monotonic and conjoint influence. However they do not give directly ranking of inputs with respect to their uncertainty's influence.
- Two step method approach

 $=mc^2$

- Creation of surrogate model (response surface) based on available data
- Estimation of the response surface quality via coefficient of determination (R²)
- Using analytical response surface to estimate importance of the input via Sobol decomposition for the Analysis of Variance (ANOVA)
- Two non-monotonic regressions considered: Recursive partitioning (tree-based) and Multi-adaptive splines (MARS)
- Influence of parameter estimated using three regressions (stepwise regression is added)
- Regression analysis used for understanding important parameters and not for prediction!

Conclusion

- Probabilistic Fracture Mechanics is an important part of any risk analysis or risk-informed approach
- US NRC and EPRI worked conjointly to develop xLPR v2.0 in order to perform probabilistic LBB analyses
- The code is developed to be modular and includes many options to extend its use to several problems
- Uncertainty represented via probabilistic framework (and probability distributions)
- Uncertainty is propagated using sampling based methods with variety of combination available
- Uncertainty and sensitivity analyses techniques are used to analyses the output and support decision making process.