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Background

Motivation

= XLPR (eXtremely Low Probability of Rupture) is a complex
probabilistic model for evaluating leak-before-break (LBB) in
large dissimilar metal welds with active degradation
mechanisms in US nuclear power plants

= The XLPR team Is currently working on applying the code to the
LBB problem in the US

= As part of applying this model to production analyses and to
further validate the model, sensitivity analyses are being
conducted
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Background

Sensitivity Analysis

= Reasons to perform a sensitivity analysis:

— ldentify inputs that warrant greatest level of scrutiny, validation, and further sensitivity
analysis

— ldentify inputs that are not key to the results

— Model validation

— Improve understanding of model behavior

— Reduction of model complexity (e.g., set “unimportant” inputs to constant values)
Inform advanced Monte Carlo sampling strategies (e.g., importance sampling)

: Avallable techniques:

— One-at-a-time

— Local partial derivatives (e.g., Adjoint Modeling)
— Variance-based (e.g., Sobol method)

— Linear regression

— Metamodels
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Background

Sensitivity Analysis using Metamodels

= Why machine learning metamodeling?

Can handle correlated inputs
Accurately reflects non-monotonicity, non-linearity, and interactions
Importance measures reflect the whole input space

Several machine learning models automatically generate sensitivity metrics
and down-select input variables based on information gained as part of the
model fitting process

Fitted model can be used in place of the original model to compute
quantitative sensitivity measures at lower computational cost

= Focus of this presentation: using built-in sensitivity metrics
generated during fitting
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Background

Analysis Activities

Run the probabilistic code and collect results

Implement metamodeling code
— Import results from probabilistic code runs

— Transform results to prepare for input to metamodel fitting (e.g., accounting for
spatially sampled variables)

— Fit the metamodel, including parameter optimization using cross-validation

— Extract and report input importance metrics
Evaluate

— Examine goodness of fit metrics

— Compare importance ranking results from alternate metamodels

— Compare importance ranking results across different outputs of interest
lterate

— Collect more inputs

— Analyze different outputs

— Run different discrete configurations of the probabilistic code

— Use different metamodels / different metamodel parameters
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Machine Learning Models

Selection and Implementation

= Python 3.6 using Scikit Learn Package*

= Machine learning models implemented:

— Gradient Boosting Decision Trees
— Random Forest Decision Trees
— Linear Support Vector Machines

= All models used are classifiers (as opposed to regressors)

= All models include metrics for feature selection / feature
Importance

*Scikit-learn: Machine Learning in Python, Pedregosa et al., IMLR 12, pp. 2825-2830, 2011.
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Metamodeling XLPR

Data Analyzed

= |nitial work focused on subset of 60 inputs:

— Inputs that are expected to have high importance
— Distributed inputs

— Constant inputs uniformly distributed from 0.8 to 1.2 times constant value
= Qutputs analyzed:

— Occurrence leak

— Occurrence rupture (with and without 1SI)

u XLPR Metamodeling u CNSC-IAEA 2" ISPMNA



Metamodeling XLPR

Spatially Distributed Inputs / Outputs

= Pipe section split into 19 subunits that can potentially crack
= Some inputs sampled on a subunit basis
= Some outputs also available on a subunit basis

= Aggregation methodology for subunit inputs / outputs

— Pipe subunit inputs and outputs: Analyze
each pipe subunit and crack direction
separately and average feature importance
metrics

— Pipe subunit inputs and global outputs:
Average input across all pipe subunits
(and crack types) and perform single
analysis to determine feature importance
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Metamodeling XLPR

Leak Output

= Qutput: Leak (through wall
crack) in any pipe subunit

= Analyzed using Gradient
Boosted Trees Classifier
(GBC)

= Allows comparison between
averaging subunit inputs and
averaging subunit analysis
outputs

= Top importance parameters for
averaged subunit inputs:

— PWSCC initiation parameters
— PWSCC growth parameters
— Operating Temp/Pressure

— Pipe OD / Thickness

— WRS (Hoop)

— Pipe yield strength
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Metamodeling XLPR

Rupture Output

= Rupture full model output (not
subunit basis)

= Analyzed using all three
machine learning classification
algorithms

= Best prediction accuracy and
CV score using Gradient
Boosted Trees Classifier

= General agreement between all
three fitted models

= Top importance parameters
consistent with leak parameters
— PWSCC initiation

— Axial WRS ranked
above Hoop
(opposite of leak)
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Metamodeling XLPR

Results Visualization

Importance factor results
compared between two analyses
to show changes in the relative
ordering of inputs

Useful for:

— Comparison between alternate
metamodeling approaches

— Determining differences in sensitivity
between different outputs of interest

— Comparing runs with different model
settings (e.g., different ISl intervals)
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Metamodeling XLPR

Results Visualization

Most important inputs
consistently drive result

Scatter indicates low
confidence in relative —
ranking (“in the noise”)
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Metamodeling XLPR

Leak Comparison — Combined Subunit Results vs Input Averaging
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Metamodeling XLPR

Rupture Comparison — No ISI vs. ISI
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Metamodeling XLPR

Conclusions

= Key findings
— Relative comparisons (e.g. Axial vs. Circ, Rupture with/without 1SI) are very useful for
sanity checking the model
— Relatively high confidence in the identification of highest-impact inputs but low confidence
in ordering of low-impact inputs

= General challenges

— Input distributions need to be selected carefully to get informative results
A default real-world analysis input set is probably not sufficient

— Special consideration needed for inputs that are not continuous variables (e.g., settings
flags)

= XLPR-specific challenges

— Prediction of simulation-wide outcomes using subunit-level sampled values

— Consideration of all inputs would be time-intensive (labor to extract sampled values and
simulation time to adequately cover full input space)
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Metamodeling XLPR

Potential Future Improvements

= |nclude more inputs in the machine learning model
= Examine other outputs of interest (e.g., leak rate jump indicator)

= Examine alternate configurations that can’t be covered
automatically using input distributions

= Use more advanced methods to improve on the relative rank
iImportance metric (e.g., variance decomposition)
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Questions?

THIS 15 YOUR MACHINE LEARNING SYSTET]?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSIERS ARE LJRONG? )

JUAT STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

Credit: XKCD, https://xkcd.com/1838/
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Backup Slides
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Machine Learning Models

Optimizing Model Fitting

= Machine learning algorithms include parameters to control how
models fit to data

= Cross validation used to optimize model parameters to achieve
good prediction while minimizing overfitting
— Splits the input data (XLPR realizations) into N random equal folds (sets)
— Machine learning model fit to N-1 folds

— Model used to predict outcomes for data in the unfitted fold and scored
based on prediction accuracy

— Process is repeated for the N fold combinations to determine an aggregate
score

— Low likelihood of overfitting if high prediction accuracy of unfitted data
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Machine Learning Models

Feature Selection

= Feature selection is used to reduce number of inputs used to fit
a model to a set of data

— The feature selection methods highlight the inputs for which the
metamodel prediction is more sensitive

= Methods include:

— Feature importance: subset of machine learning algorithms directly
provide metrics for relative importance of (input) features on model
prediction

— Recursive feature elimination (RFE): series of regression fits using a
machine learning model where least important input features for model
prediction are incrementally removed from sequential regressed fits

— Principal component analysis (PCA): statistical procedure that
transforms the input matrix (that possibly contains correlated variables)
Into a set of linearly uncorrelated “principal components”
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Machine Learning Models

Decision Tree based Models

= Decision Tree based machine learning algorithms perform
predictions using an ensemble of decision trees:

— Each decision tree is a weak learner that does not accurately classify the
entire sample population

— The combined contribution from an ensemble of many weak learners can
result in a more accurate prediction

— Susceptible to overfitting if too many or large
decision trees included in ensemble

— Algorithm parameters control how trees are trained
= Examples:
— Gradient Boosting Decision Trees

— Random Forest Decision Trees
— Adaboost Decision Trees

21 u XLPR Metamodeling u CNSC-IAEA 2" ISPMNA



Machine Learning Models

Gradient Boosting Details

= Trains ensemble of sequentially added decision trees by minimizing a
loss function using steepest descent

= Each additional tree intended to reduce error in previous trees

= Number of parameters control how many / how the trees are
constructed during the training:

— Tree specific parameters:
« Tree depth (number of decision points in tree)
« Minimum number of samples to split (decision point)
« Minimum number of leaf samples (tree end point)
« Max features to consider for a decision point

— Boosting parameters:

* Number of trees Leak No Leak || Leak [No Leak}
 Learning rate (relative weight of each tree) N=5 || N=15 || N=20 || N=10

22 u XLPR Metamodeling u CNSC-IAEA 2" ISPMNA



Machine Learning Models

Random Forest Details

= Trains ensemble of decision trees using bagging (each tree is trained
to subsamples of the input dataset with replacement) and each tree
only considers a random subset of the input features

= Prediction is based on average or mode of the tree results

= Number of parameters control how many / how the trees are
constructed during the training:

— Tree specific parameters:
« Tree depth (number of decision points in tree)
« Minimum number of samples to split (decision point)
«  Minimum number of leaf samples (tree end point)
« Max features to consider for a decision point

B Ensemble parameters' Leak No Leak Leak [No Leak}
* Number of trees N=5 N=15 || N=20 || N=10
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Machine Learning Models

Support Vector Machines

= Support vector machines develop hyperplanes in multi-
dimensional space to differentiate training data for classification
or regression

— Hyperplanes can be linear or non-linear (e.g., polynomial)

— Maximizes the margin (distance / loss function) between the hyperplane
and the target classes

A

X7
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Machine Learning Models

Linear Support Vector Machines

= Linear SVM Inputs are normalized to range from 0 - 1

= Linear SVM includes single controlling parameter C

— Small values maximize margin separating the hyperplane from data
— Large values minimize misclassification and allow smaller margins

Xy X7 ‘

Small C Large C
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