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Background 
Motivation 

 xLPR (eXtremely Low Probability of Rupture) is a complex 
probabilistic model for evaluating leak-before-break (LBB) in 
large dissimilar metal welds with active degradation 
mechanisms in US nuclear power plants 
 The xLPR team is currently working on applying the code to the 

LBB problem in the US 
 As part of applying this model to production analyses and to 

further validate the model, sensitivity analyses are being 
conducted 
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Background 
Sensitivity Analysis 

 Reasons to perform a sensitivity analysis: 
– Identify inputs that warrant greatest level of scrutiny, validation, and further sensitivity 

analysis 
– Identify inputs that are not key to the results 
– Model validation 
– Improve understanding of model behavior 
– Reduction of model complexity (e.g., set “unimportant” inputs to constant values) 
– Inform advanced Monte Carlo sampling strategies (e.g., importance sampling) 

 Available techniques: 
– One-at-a-time 
– Local partial derivatives (e.g., Adjoint Modeling) 
– Variance-based (e.g., Sobol method) 
– Linear regression 
– Metamodels 
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Background 
Sensitivity Analysis using Metamodels 

 Why machine learning metamodeling? 
– Can handle correlated inputs 
– Accurately reflects non-monotonicity, non-linearity, and interactions  
– Importance measures reflect the whole input space 
– Several machine learning models automatically generate sensitivity metrics 

and down-select input variables based on information gained as part of the 
model fitting process 

– Fitted model can be used in place of the original model to compute 
quantitative sensitivity measures at lower computational cost 

 Focus of this presentation: using built-in sensitivity metrics 
generated during fitting 
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Background 
Analysis Activities 

 Run the probabilistic code and collect results 
 Implement metamodeling code 

– Import results from probabilistic code runs 
– Transform results to prepare for input to metamodel fitting (e.g., accounting for 

spatially sampled variables) 
– Fit the metamodel, including parameter optimization using cross-validation 
– Extract and report input importance metrics 

 Evaluate 
– Examine goodness of fit metrics 
– Compare importance ranking results from alternate metamodels 
– Compare importance ranking results across different outputs of interest 

 Iterate 
– Collect more inputs 
– Analyze different outputs 
– Run different discrete configurations of the probabilistic code 
– Use different metamodels / different metamodel parameters 
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Machine Learning Models 
 Selection and Implementation  

 Python 3.6 using Scikit Learn Package* 
 Machine learning models implemented: 

– Gradient Boosting Decision Trees 
– Random Forest Decision Trees 
– Linear Support Vector Machines 

 All models used are classifiers (as opposed to regressors) 
 All models include metrics for feature selection / feature 

importance 
 
 
 

*Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011. 
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Metamodeling xLPR 
Data Analyzed 

 Initial work focused on subset of 60 inputs: 
– Inputs that are expected to have high importance 
– Distributed inputs 
– Constant inputs uniformly distributed from 0.8 to 1.2 times constant value 

 Outputs analyzed: 
– Occurrence leak  
– Occurrence rupture (with and without ISI) 
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Metamodeling xLPR 
Spatially Distributed Inputs / Outputs 

 Pipe section split into 19 subunits that can potentially crack 
 Some inputs sampled on a subunit basis 
 Some outputs also available on a subunit basis 
 Aggregation methodology for subunit inputs / outputs 

– Pipe subunit inputs and outputs: Analyze  
each pipe subunit and crack direction  
separately and average feature importance  
metrics 

– Pipe subunit inputs and global outputs: 
Average input across all pipe subunits 
(and crack types) and perform single 
analysis to determine feature importance 
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Metamodeling xLPR 
Leak Output 

 Output: Leak (through wall 
crack) in any pipe subunit 

 Analyzed using Gradient 
Boosted Trees Classifier 
(GBC) 

 Allows comparison between 
averaging subunit inputs and 
averaging subunit analysis 
outputs  

 Top importance parameters for 
averaged subunit inputs: 

– PWSCC initiation parameters 
– PWSCC growth parameters 
– Operating Temp/Pressure 
– Pipe OD / Thickness 
– WRS (Hoop) 
– Pipe yield strength 
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Metamodeling xLPR 
Rupture Output 

 Rupture full model output (not 
subunit basis) 

 Analyzed using all three 
machine learning classification 
algorithms 

 Best prediction accuracy and 
CV score using Gradient 
Boosted Trees Classifier 

 General agreement between all 
three fitted models 

 Top importance parameters 
consistent with leak parameters 

– PWSCC initiation 
– Axial WRS ranked 

above Hoop 
(opposite of leak) 
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Metamodeling xLPR 
Results Visualization 

 Importance factor results 
compared between two analyses 
to show changes in the relative 
ordering of inputs 

 Useful for: 
– Comparison between alternate 

metamodeling approaches 
– Determining differences in sensitivity 

between different outputs of interest 
– Comparing runs with different model 

settings (e.g., different ISI intervals) 
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Metamodeling xLPR 
Results Visualization 

Most important inputs 
consistently drive result 

Scatter indicates low 
confidence in relative 

ranking (“in the noise”) 
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Metamodeling xLPR 
Leak Comparison – Combined Subunit Results vs Input Averaging 
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Metamodeling xLPR 
Rupture Comparison – No ISI vs. ISI 
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Metamodeling xLPR 
Conclusions 

 Key findings 
– Relative comparisons (e.g. Axial vs. Circ, Rupture with/without ISI) are very useful for 

sanity checking the model 
– Relatively high confidence in the identification of highest-impact inputs but low confidence 

in ordering of low-impact inputs 

 General challenges 
– Input distributions need to be selected carefully to get informative results 

• A default real-world analysis input set is probably not sufficient 

– Special consideration needed for inputs that are not continuous variables (e.g., settings 
flags) 

 xLPR-specific challenges 
– Prediction of simulation-wide outcomes using subunit-level sampled values 
– Consideration of all inputs would be time-intensive (labor to extract sampled values and 

simulation time to adequately cover full input space) 
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Metamodeling xLPR 
Potential Future Improvements 

 Include more inputs in the machine learning model 
 Examine other outputs of interest (e.g., leak rate jump indicator) 
 Examine alternate configurations that can’t be covered 

automatically using input distributions 
 Use more advanced methods to improve on the relative rank 

importance metric (e.g., variance decomposition) 
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Questions? 

Credit: XKCD, https://xkcd.com/1838/ 
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Backup Slides 
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Machine Learning Models 
 Optimizing Model Fitting 

 Machine learning algorithms include parameters to control how 
models fit to data 
 Cross validation used to optimize model parameters to achieve 

good prediction while minimizing overfitting 
– Splits the input data (xLPR realizations) into N random equal folds (sets) 
– Machine learning model fit to N-1 folds 
– Model used to predict outcomes for data in the unfitted fold and scored 

based on prediction accuracy 
– Process is repeated for the N fold combinations to determine an aggregate 

score 
– Low likelihood of overfitting if high prediction accuracy of unfitted data 
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Machine Learning Models 
 Feature Selection 

 Feature selection is used to reduce number of inputs used to fit 
a model to a set of data 
– The feature selection methods highlight the inputs for which the 

metamodel prediction is more sensitive 
 Methods include: 

– Feature importance: subset of machine learning algorithms directly 
provide metrics for relative importance of (input) features on model 
prediction 

– Recursive feature elimination (RFE): series of regression fits using a 
machine learning model where least important input features for model 
prediction are incrementally removed from sequential regressed fits 

– Principal component analysis (PCA): statistical procedure that 
transforms the input matrix (that possibly contains correlated variables) 
into a set of linearly uncorrelated “principal components” 
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Machine Learning Models 
 Decision Tree based Models  

 Decision Tree based machine learning algorithms perform 
predictions using an ensemble of decision trees: 
– Each decision tree is a weak learner that does not accurately classify the 

entire sample population 
– The combined contribution from an ensemble of many weak learners can 

result in a more accurate prediction 
– Susceptible to overfitting if too many or large 

decision trees included in ensemble 
– Algorithm parameters control how trees are trained 

 Examples: 
– Gradient Boosting Decision Trees 
– Random Forest Decision Trees 
– Adaboost Decision Trees 
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Machine Learning Models 
 Gradient Boosting Details 

 Trains ensemble of sequentially added decision trees by minimizing a 
loss function using steepest descent 

 Each additional tree intended to reduce error in previous trees 
 Number of parameters control how many / how the trees are 

constructed during the training: 
– Tree specific parameters: 

• Tree depth (number of decision points in tree) 
• Minimum number of samples to split (decision point) 
• Minimum number of leaf samples (tree end point) 
• Max features to consider for a decision point 

– Boosting parameters: 
• Number of trees 
• Learning rate (relative weight of each tree) 

Thickness < 5 
N= 20 

Leak 
N = 5 

No Leak 
N = 15 

Stress > 25 
N= 30 

Leak 
N = 20 

No Leak 
N = 10 

Yield Stress < 30  
N= 50 



xLPR Metamodeling 23 CNSC-IAEA 2nd ISPMNA 

Machine Learning Models 
 Random Forest Details 

 Trains ensemble of decision trees using bagging (each tree is trained 
to subsamples of the input dataset with replacement) and each tree 
only considers a random subset of the input features 

 Prediction is based on average or mode of the tree results 
 Number of parameters control how many / how the trees are 

constructed during the training: 
– Tree specific parameters: 

• Tree depth (number of decision points in tree) 
• Minimum number of samples to split (decision point) 
• Minimum number of leaf samples (tree end point) 
• Max features to consider for a decision point 

– Ensemble parameters: 
• Number of trees 

Thickness < 5 
N= 20 

Leak 
N = 5 

No Leak 
N = 15 

Stress > 25 
N= 30 

Leak 
N = 20 

No Leak 
N = 10 

Yield Stress < 30  
N= 50 



xLPR Metamodeling 24 CNSC-IAEA 2nd ISPMNA 

Machine Learning Models 
 Support Vector Machines  

 Support vector machines develop hyperplanes in multi-
dimensional space to differentiate training data for classification 
or regression 
– Hyperplanes can be linear or non-linear (e.g., polynomial)  
– Maximizes the margin (distance / loss function) between the hyperplane 

and the target classes 
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Machine Learning Models 
 Linear Support Vector Machines  

 Linear SVM inputs are normalized to range from 0 - 1 
 Linear SVM includes single controlling parameter C 

– Small values maximize margin separating the hyperplane from data 
– Large values minimize misclassification and allow smaller margins 

x1 

x2 

x1 

x2 

Small C Large C 


	Global Sensitivity Analysis of xLPR using Metamodeling��
	Background�Motivation
	Background�Sensitivity Analysis
	Background�Sensitivity Analysis using Metamodels
	Background�Analysis Activities
	Machine Learning Models� Selection and Implementation 
	Metamodeling xLPR�Data Analyzed
	Metamodeling xLPR�Spatially Distributed Inputs / Outputs
	Metamodeling xLPR�Leak Output
	Metamodeling xLPR�Rupture Output
	Metamodeling xLPR�Results Visualization
	Metamodeling xLPR�Results Visualization
	Metamodeling xLPR�Leak Comparison – Combined Subunit Results vs Input Averaging
	Metamodeling xLPR�Rupture Comparison – No ISI vs. ISI
	Metamodeling xLPR�Conclusions
	Metamodeling xLPR�Potential Future Improvements
	Questions?
	Backup Slides
	Machine Learning Models� Optimizing Model Fitting
	Machine Learning Models� Feature Selection
	Machine Learning Models� Decision Tree based Models 
	Machine Learning Models� Gradient Boosting Details
	Machine Learning Models� Random Forest Details
	Machine Learning Models� Support Vector Machines 
	Machine Learning Models� Linear Support Vector Machines 

