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Background 
Motivation 

 xLPR (eXtremely Low Probability of Rupture) is a complex 
probabilistic model for evaluating leak-before-break (LBB) in 
large dissimilar metal welds with active degradation 
mechanisms in US nuclear power plants 
 The xLPR team is currently working on applying the code to the 

LBB problem in the US 
 As part of applying this model to production analyses and to 

further validate the model, sensitivity analyses are being 
conducted 
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Background 
Sensitivity Analysis 

 Reasons to perform a sensitivity analysis: 
– Identify inputs that warrant greatest level of scrutiny, validation, and further sensitivity 

analysis 
– Identify inputs that are not key to the results 
– Model validation 
– Improve understanding of model behavior 
– Reduction of model complexity (e.g., set “unimportant” inputs to constant values) 
– Inform advanced Monte Carlo sampling strategies (e.g., importance sampling) 

 Available techniques: 
– One-at-a-time 
– Local partial derivatives (e.g., Adjoint Modeling) 
– Variance-based (e.g., Sobol method) 
– Linear regression 
– Metamodels 
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Background 
Sensitivity Analysis using Metamodels 

 Why machine learning metamodeling? 
– Can handle correlated inputs 
– Accurately reflects non-monotonicity, non-linearity, and interactions  
– Importance measures reflect the whole input space 
– Several machine learning models automatically generate sensitivity metrics 

and down-select input variables based on information gained as part of the 
model fitting process 

– Fitted model can be used in place of the original model to compute 
quantitative sensitivity measures at lower computational cost 

 Focus of this presentation: using built-in sensitivity metrics 
generated during fitting 
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Background 
Analysis Activities 

 Run the probabilistic code and collect results 
 Implement metamodeling code 

– Import results from probabilistic code runs 
– Transform results to prepare for input to metamodel fitting (e.g., accounting for 

spatially sampled variables) 
– Fit the metamodel, including parameter optimization using cross-validation 
– Extract and report input importance metrics 

 Evaluate 
– Examine goodness of fit metrics 
– Compare importance ranking results from alternate metamodels 
– Compare importance ranking results across different outputs of interest 

 Iterate 
– Collect more inputs 
– Analyze different outputs 
– Run different discrete configurations of the probabilistic code 
– Use different metamodels / different metamodel parameters 
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Machine Learning Models 
 Selection and Implementation  

 Python 3.6 using Scikit Learn Package* 
 Machine learning models implemented: 

– Gradient Boosting Decision Trees 
– Random Forest Decision Trees 
– Linear Support Vector Machines 

 All models used are classifiers (as opposed to regressors) 
 All models include metrics for feature selection / feature 

importance 
 
 
 

*Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011. 
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Metamodeling xLPR 
Data Analyzed 

 Initial work focused on subset of 60 inputs: 
– Inputs that are expected to have high importance 
– Distributed inputs 
– Constant inputs uniformly distributed from 0.8 to 1.2 times constant value 

 Outputs analyzed: 
– Occurrence leak  
– Occurrence rupture (with and without ISI) 
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Metamodeling xLPR 
Spatially Distributed Inputs / Outputs 

 Pipe section split into 19 subunits that can potentially crack 
 Some inputs sampled on a subunit basis 
 Some outputs also available on a subunit basis 
 Aggregation methodology for subunit inputs / outputs 

– Pipe subunit inputs and outputs: Analyze  
each pipe subunit and crack direction  
separately and average feature importance  
metrics 

– Pipe subunit inputs and global outputs: 
Average input across all pipe subunits 
(and crack types) and perform single 
analysis to determine feature importance 
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Metamodeling xLPR 
Leak Output 

 Output: Leak (through wall 
crack) in any pipe subunit 

 Analyzed using Gradient 
Boosted Trees Classifier 
(GBC) 

 Allows comparison between 
averaging subunit inputs and 
averaging subunit analysis 
outputs  

 Top importance parameters for 
averaged subunit inputs: 

– PWSCC initiation parameters 
– PWSCC growth parameters 
– Operating Temp/Pressure 
– Pipe OD / Thickness 
– WRS (Hoop) 
– Pipe yield strength 
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Metamodeling xLPR 
Rupture Output 

 Rupture full model output (not 
subunit basis) 

 Analyzed using all three 
machine learning classification 
algorithms 

 Best prediction accuracy and 
CV score using Gradient 
Boosted Trees Classifier 

 General agreement between all 
three fitted models 

 Top importance parameters 
consistent with leak parameters 

– PWSCC initiation 
– Axial WRS ranked 

above Hoop 
(opposite of leak) 
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Metamodeling xLPR 
Results Visualization 

 Importance factor results 
compared between two analyses 
to show changes in the relative 
ordering of inputs 

 Useful for: 
– Comparison between alternate 

metamodeling approaches 
– Determining differences in sensitivity 

between different outputs of interest 
– Comparing runs with different model 

settings (e.g., different ISI intervals) 
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Metamodeling xLPR 
Results Visualization 

Most important inputs 
consistently drive result 

Scatter indicates low 
confidence in relative 

ranking (“in the noise”) 
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Metamodeling xLPR 
Leak Comparison – Combined Subunit Results vs Input Averaging 
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Metamodeling xLPR 
Rupture Comparison – No ISI vs. ISI 
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Metamodeling xLPR 
Conclusions 

 Key findings 
– Relative comparisons (e.g. Axial vs. Circ, Rupture with/without ISI) are very useful for 

sanity checking the model 
– Relatively high confidence in the identification of highest-impact inputs but low confidence 

in ordering of low-impact inputs 

 General challenges 
– Input distributions need to be selected carefully to get informative results 

• A default real-world analysis input set is probably not sufficient 

– Special consideration needed for inputs that are not continuous variables (e.g., settings 
flags) 

 xLPR-specific challenges 
– Prediction of simulation-wide outcomes using subunit-level sampled values 
– Consideration of all inputs would be time-intensive (labor to extract sampled values and 

simulation time to adequately cover full input space) 
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Metamodeling xLPR 
Potential Future Improvements 

 Include more inputs in the machine learning model 
 Examine other outputs of interest (e.g., leak rate jump indicator) 
 Examine alternate configurations that can’t be covered 

automatically using input distributions 
 Use more advanced methods to improve on the relative rank 

importance metric (e.g., variance decomposition) 
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Questions? 

Credit: XKCD, https://xkcd.com/1838/ 
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Backup Slides 
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Machine Learning Models 
 Optimizing Model Fitting 

 Machine learning algorithms include parameters to control how 
models fit to data 
 Cross validation used to optimize model parameters to achieve 

good prediction while minimizing overfitting 
– Splits the input data (xLPR realizations) into N random equal folds (sets) 
– Machine learning model fit to N-1 folds 
– Model used to predict outcomes for data in the unfitted fold and scored 

based on prediction accuracy 
– Process is repeated for the N fold combinations to determine an aggregate 

score 
– Low likelihood of overfitting if high prediction accuracy of unfitted data 
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Machine Learning Models 
 Feature Selection 

 Feature selection is used to reduce number of inputs used to fit 
a model to a set of data 
– The feature selection methods highlight the inputs for which the 

metamodel prediction is more sensitive 
 Methods include: 

– Feature importance: subset of machine learning algorithms directly 
provide metrics for relative importance of (input) features on model 
prediction 

– Recursive feature elimination (RFE): series of regression fits using a 
machine learning model where least important input features for model 
prediction are incrementally removed from sequential regressed fits 

– Principal component analysis (PCA): statistical procedure that 
transforms the input matrix (that possibly contains correlated variables) 
into a set of linearly uncorrelated “principal components” 
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Machine Learning Models 
 Decision Tree based Models  

 Decision Tree based machine learning algorithms perform 
predictions using an ensemble of decision trees: 
– Each decision tree is a weak learner that does not accurately classify the 

entire sample population 
– The combined contribution from an ensemble of many weak learners can 

result in a more accurate prediction 
– Susceptible to overfitting if too many or large 

decision trees included in ensemble 
– Algorithm parameters control how trees are trained 

 Examples: 
– Gradient Boosting Decision Trees 
– Random Forest Decision Trees 
– Adaboost Decision Trees 
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Machine Learning Models 
 Gradient Boosting Details 

 Trains ensemble of sequentially added decision trees by minimizing a 
loss function using steepest descent 

 Each additional tree intended to reduce error in previous trees 
 Number of parameters control how many / how the trees are 

constructed during the training: 
– Tree specific parameters: 

• Tree depth (number of decision points in tree) 
• Minimum number of samples to split (decision point) 
• Minimum number of leaf samples (tree end point) 
• Max features to consider for a decision point 

– Boosting parameters: 
• Number of trees 
• Learning rate (relative weight of each tree) 
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Machine Learning Models 
 Random Forest Details 

 Trains ensemble of decision trees using bagging (each tree is trained 
to subsamples of the input dataset with replacement) and each tree 
only considers a random subset of the input features 

 Prediction is based on average or mode of the tree results 
 Number of parameters control how many / how the trees are 

constructed during the training: 
– Tree specific parameters: 

• Tree depth (number of decision points in tree) 
• Minimum number of samples to split (decision point) 
• Minimum number of leaf samples (tree end point) 
• Max features to consider for a decision point 

– Ensemble parameters: 
• Number of trees 
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Machine Learning Models 
 Support Vector Machines  

 Support vector machines develop hyperplanes in multi-
dimensional space to differentiate training data for classification 
or regression 
– Hyperplanes can be linear or non-linear (e.g., polynomial)  
– Maximizes the margin (distance / loss function) between the hyperplane 

and the target classes 
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Machine Learning Models 
 Linear Support Vector Machines  

 Linear SVM inputs are normalized to range from 0 - 1 
 Linear SVM includes single controlling parameter C 

– Small values maximize margin separating the hyperplane from data 
– Large values minimize misclassification and allow smaller margins 
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