Global Sensitivity Analysis of xLPR using Metamodeling

Presented To: CNSC-IAEA 2nd International Seminar on Probabilistic Methodologies for Nuclear Applications Ottawa, Ontario, Canada

> Presented By: Christopher Casarez Dominion Engineering, Inc.

October 26, 2017

Additional Authors: Thomas Ligon, Markus Burkardt, Glenn White Dominion Engineering, Inc.

> Craig Harrington Electric Power Research Institute

12100 Sunrise Valley Dr. #220 Reston, VA 20191 703.657.7300 www.domeng.com

Background

- xLPR (eXtremely Low Probability of Rupture) is a complex probabilistic model for evaluating leak-before-break (LBB) in large dissimilar metal welds with active degradation mechanisms in US nuclear power plants
- The xLPR team is currently working on applying the code to the LBB problem in the US
- As part of applying this model to production analyses and to further validate the model, sensitivity analyses are being conducted

CNSC-IAEA 2nd ISPMNA

Background Sensitivity Analysis

- Reasons to perform a sensitivity analysis:
 - Identify inputs that warrant greatest level of scrutiny, validation, and further sensitivity analysis
 - Identify inputs that are not key to the results
 - Model validation
 - Improve understanding of model behavior
 - Reduction of model complexity (e.g., set "unimportant" inputs to constant values)
 - Inform advanced Monte Carlo sampling strategies (e.g., importance sampling)

Available techniques:

- One-at-a-time
- Local partial derivatives (e.g., Adjoint Modeling)
- Variance-based (e.g., Sobol method)
- Linear regression
- Metamodels

Background

Sensitivity Analysis using Metamodels

- Why machine learning metamodeling?
 - Can handle correlated inputs
 - Accurately reflects non-monotonicity, non-linearity, and interactions
 - Importance measures reflect the whole input space
 - Several machine learning models automatically generate sensitivity metrics and down-select input variables based on information gained as part of the model fitting process
 - Fitted model can be used in place of the original model to compute quantitative sensitivity measures at lower computational cost
- Focus of this presentation: using built-in sensitivity metrics generated during fitting

CNSC-IAEA 2nd ISPMNA

Background Analysis Activities

- Run the probabilistic code and collect results
- Implement metamodeling code
 - Import results from probabilistic code runs
 - Transform results to prepare for input to metamodel fitting (e.g., accounting for spatially sampled variables)
 - Fit the metamodel, including parameter optimization using cross-validation
 - Extract and report input importance metrics
- Evaluate
 - Examine goodness of fit metrics
 - Compare importance ranking results from alternate metamodels
 - Compare importance ranking results across different outputs of interest
- Iterate
 - Collect more inputs
 - Analyze different outputs
 - Run different discrete configurations of the probabilistic code
 - Use different metamodels / different metamodel parameters

Selection and Implementation

- Python 3.6 using Scikit Learn Package*
- Machine learning models implemented:
 - Gradient Boosting Decision Trees
 - Random Forest Decision Trees
 - Linear Support Vector Machines
- All models used are classifiers (as opposed to regressors)
- All models include metrics for feature selection / feature importance

*Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

Data Analyzed

7

- Initial work focused on subset of 60 inputs:
 - Inputs that are expected to have high importance
 - Distributed inputs
 - Constant inputs uniformly distributed from 0.8 to 1.2 times constant value
- Outputs analyzed:
 - Occurrence leak
 - Occurrence rupture (with and without ISI)

CNSC-IAEA 2nd ISPMNA

Spatially Distributed Inputs / Outputs

- Pipe section split into 19 subunits that can potentially crack
- Some inputs sampled on a subunit basis
- Some outputs also available on a subunit basis
- Aggregation methodology for subunit inputs / outputs
 - Pipe subunit inputs and outputs: Analyze each pipe subunit and crack direction separately and average feature importance metrics
 - Pipe subunit inputs and global outputs: Average input across all pipe subunits (and crack types) and perform single analysis to determine feature importance

Leak Output

- Output: Leak (through wall crack) in any pipe subunit
- Analyzed using Gradient **Boosted Trees Classifier** (GBC)
- Allows comparison between averaging subunit inputs and averaging subunit analysis outputs
- Top importance parameters for averaged subunit inputs:
 - PWSCC initiation parameters
 - PWSCC growth parameters
 - **Operating Temp/Pressure**
 - Pipe OD / Thickness
 - WRS (Hoop)
 - Pipe yield strength

Rupture Output

- Rupture full model output (not subunit basis)
- Analyzed using all three machine learning classification algorithms
- Best prediction accuracy and CV score using Gradient Boosted Trees Classifier
- General agreement between all three fitted models
- Top importance parameters consistent with leak parameters
 - PWSCC initiation
 - Axial WRS ranked above Hoop (opposite of leak)

CNSC-IAEA 2nd ISPMNA

Results Visualization

- Importance factor results compared between two analyses to show changes in the relative ordering of inputs
- Useful for:
 - Comparison between alternate metamodeling approaches
 - Determining differences in sensitivity between different outputs of interest
 - Comparing runs with different model settings (e.g., different ISI intervals)

Results Visualization

Leak Comparison – Combined Subunit Results vs Input Averaging

Rupture Comparison – No ISI vs. ISI

Conclusions

- Key findings
 - Relative comparisons (e.g. Axial vs. Circ, Rupture with/without ISI) are very useful for sanity checking the model
 - Relatively high confidence in the identification of highest-impact inputs but low confidence in ordering of low-impact inputs

General challenges

- Input distributions need to be selected carefully to get informative results
 - A default real-world analysis input set is probably not sufficient
- Special consideration needed for inputs that are not continuous variables (e.g., settings flags)
- xLPR-specific challenges
 - Prediction of simulation-wide outcomes using subunit-level sampled values
 - Consideration of all inputs would be time-intensive (labor to extract sampled values and simulation time to adequately cover full input space)

Potential Future Improvements

- Include more inputs in the machine learning model
- Examine other outputs of interest (e.g., leak rate jump indicator)
- Examine alternate configurations that can't be covered automatically using input distributions
- Use more advanced methods to improve on the relative rank importance metric (e.g., variance decomposition)

CNSC-IAEA 2nd ISPMNA

Questions?

Credit: XKCD, https://xkcd.com/1838/

Backup Slides

Optimizing Model Fitting

- Machine learning algorithms include parameters to control how models fit to data
- Cross validation used to optimize model parameters to achieve good prediction while minimizing overfitting
 - Splits the input data (xLPR realizations) into N random equal folds (sets)
 - Machine learning model fit to N-1 folds
 - Model used to predict outcomes for data in the unfitted fold and scored based on prediction accuracy
 - Process is repeated for the N fold combinations to determine an aggregate score
 - Low likelihood of overfitting if high prediction accuracy of unfitted data

Feature Selection

- Feature selection is used to reduce number of inputs used to fit a model to a set of data
 - The feature selection methods highlight the inputs for which the metamodel prediction is more sensitive
- Methods include:
 - Feature importance: subset of machine learning algorithms directly provide metrics for relative importance of (input) features on model prediction
 - Recursive feature elimination (RFE): series of regression fits using a machine learning model where least important input features for model prediction are incrementally removed from sequential regressed fits
 - Principal component analysis (PCA): statistical procedure that transforms the input matrix (that possibly contains correlated variables) into a set of linearly uncorrelated "principal components"

Decision Tree based Models

- Decision Tree based machine learning algorithms perform predictions using an *ensemble* of decision trees:
 - Each decision tree is a *weak learner* that does not accurately classify the entire sample population
 - The combined contribution from an ensemble of many weak learners can result in a more accurate prediction
 - Susceptible to overfitting if too many or large decision trees included in ensemble
 - Algorithm parameters control how trees are trained
- Examples:
 - Gradient Boosting Decision Trees
 - Random Forest Decision Trees
 - Adaboost Decision Trees

Gradient Boosting Details

- Trains ensemble of sequentially added decision trees by minimizing a loss function using steepest descent
- Each additional tree intended to reduce error in previous trees
- Number of parameters control how many / how the trees are constructed during the training:
 - Tree specific parameters:
 - Tree depth (number of decision points in tree)
 - Minimum number of samples to split (decision point)
 - Minimum number of leaf samples (tree end point)
 - Max features to consider for a decision point
 - Boosting parameters:
 - Number of trees
 - Learning rate (relative weight of each tree)

xLPR Metamodeling

Random Forest Details

- Trains ensemble of decision trees using bagging (each tree is trained to subsamples of the input dataset with replacement) and each tree only considers a random subset of the input features
- Prediction is based on average or mode of the tree results
- Number of parameters control how many / how the trees are constructed during the training:
 - Tree specific parameters:
 - Tree depth (number of decision points in tree)
 - Minimum number of samples to split (decision point)
 - Minimum number of leaf samples (tree end point)
 - Max features to consider for a decision point
 - Ensemble parameters:
 - Number of trees

Support Vector Machines

- Support vector machines develop hyperplanes in multidimensional space to differentiate training data for classification or regression
 - Hyperplanes can be linear or non-linear (e.g., polynomial)
 - Maximizes the margin (distance / loss function) between the hyperplane and the target classes

Linear Support Vector Machines

- Linear SVM inputs are normalized to range from 0 1
- Linear SVM includes single controlling parameter C
 - Small values maximize margin separating the hyperplane from data
 - Large values minimize misclassification and allow smaller margins

