Role of Inspection Strategies in Probabilistic Assessment of Reactor Components

Professor Mahesh Pandey NSERC-UNENE Industrial Research Chair University of Waterloo Waterloo, ON, Canada

UNENE University Network of Excellence in Nuclear Engineering

Outline

- The role of inspections in probabilistic assessment (PA)
- Inspection strategy: Key Elements
 - Sample size
 - Frequency of inspections
- How to determine sample size and frequency?
- What is the effect of a chosen inspection strategy?
 - In probabilistic terms

Motivation

- Use of information provided by a probabilistic assessment
 - PA investigates plausible degradation mechanisms affecting the component performance
 - PA determines suitable mechanistic models to predict the evolution of degradation over time
 - Onset of degradation, growth rate
 - PA leads to lifetime distribution of a component
 - Time to onset of degradation, or time to reach a degradation failure (or defective state)
- How to (1) evaluate accuracy of these predictions, and (2) use them to guide the inspection/maintenance plans?

Role of Inspections

 Collect data to characterize distributions of random variables involved with a PA

Compliance demonstration

Compliance with quality control targets of standards and codes

Diagnostic purposes

- Is the system in an acceptable state?
- Detect the onset of degradation
- Estimate the extent of degradation
- Supporting role in ageing management

Objectives

- Discussion of statistical approaches to determine the sample size and corresponding acceptance rules
- Present a model to evaluate the effect of an Inspection strategy in controlling the spread of degradation
 - Remark
 - Inspection and maintenance rules are well developed in PSA, and they are not discussed in this presentation

Inspection Guidelines: Examples

CSA N 285.4 for periodic in-service inspection

			Baseline (Inaugural)	Periodic inspection		Inspection intervals
			inspection	Category A	Category B	inspection intervals
Fuel channel feeder pipes	wall thickness measurement		20 inlet and 20 outlet	10 inlet and 10 outlet		6-year interval
	Feeder pipe visual inspections		All	1/4 (10 detail	1/4 (10 detailed inspection)	
Steam generator (SG) tubes	Volumetric inspection of tubing	Steam generators	25%	n ≥5% oi	n ≥5% or 25 tubes	
		Separate preheaters	25%	n ≥2% oi	n ≥2% or 25 tubes	
	Secondary-side tube and tube support visual inspections			One steam	One steam generator	
	Metallurgical examination of tubing			n	n ≥1	
Fuel channels	Volumetric and dimensional inspection		n≥15	n 2	n ≥10	
	Hydrogen equivalent concentration (H_eq) determination			$n \ge 10 (n \ge 6)$	for interval 1)	4≺ t <8 (about 6-year interval)
	Pressure tube material properties testing			n ≥1		4-year interval (after 12- year operation)

Inspection for Ageing Management

Primary goals

- How widespread is degradation in the population of components?
 - Statistical hypothesis test
- How quickly degraded components should be inspected/removed from the population?
 - Inspection sample size and frequency determines this.
 - At any given time, how many defective components are present in the population?
- Probabilistic models are needed to answer these questions

Statistical Sampling Plan

Developed in quality control to set up the acceptance sampling plan

- Ex: electronic items, material samples
- ASTM Standards
- Purpose: Demonstration of compliance with a quality standard
 - Ex: The % of defectives is less than some target value (1%)
 - Demonstrate this at a certain statistical confidence level
- This can be used in degradation monitoring as well

Statistical Approaches

Precision of estimation criterion

• To estimate a parameter with a specified width of confidence interval

Hypothesis Testing Approach

- Hypothesis about the extend of % defective "p"
- Determine the sample size to control the Type 1 (false negative) and Type 2 (false positive) errors
- This is a standard approach to sample size determination in statistical literature

Bayesian Methods

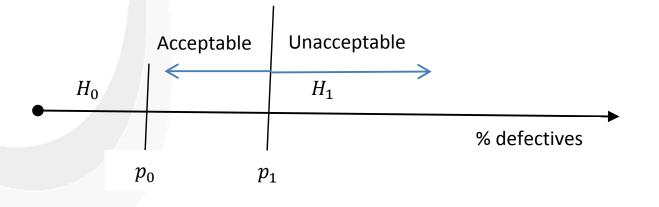
Commonly used in medical literature

Applications

(1) Confidence Interval Approach

- Estimate the defective fraction with a high confidence and a narrow error bound
 - Estimate should be within $\pm\epsilon$ % of the true value of p

Example


- %defective p = 10%, error $\epsilon = 50\%$ of p, confidence = 90%,
- Sample size n = 97

 This approach is impractical for detecting a small level of degradation with a small margin of error

(2) Hypothesis Testing Approach

- Test a statistical hypothesis regarding a certain percentage, "p", of defective components
- Null Hypothesis $H_0: p = p_0$
- Alternate Hypothesis H_1 : $p = p_1$ ($p_1 > p_0$)
 - p_0 : an acceptable value of p to meet the reliability goal
 - p_1 : an unacceptable value of p

Statistical Errors

- Hypothesis testing considers both Type 1 (α) and Type 2 (β) errors
- Type 1: Reject H₀ when it is true
 - Judge that $p > p_0$ when in reality $p \le p_0$
- Type 2: Accept H₀ when it is false
 - Judge that $p \leq p_0$ when in reality $p > p_0$
- A careful calibration of this approach is necessary to limit the sample size to a small and manageable number

Example

Objective

• The % defective in the population must be less than 10%, $p \leq 10\%$

We treat 10% as an uppermost limit

- Select the alternate value, $p_1 = 10\%$
- Statistical Errors: $\alpha = 10\%$, $\beta = 10\%$
- For $p_0 = 0.04$, sample size n = 112

Second example

- Statistical Errors: $\alpha = 20\%$, $\beta = 30\%$
- For $p_0 = 0.04$, sample size n = 29
- What is the meaning of all this?

Interpretation

• Take a sample n = 112 and we find the number of defective components, $k \leq 7$

- Conclusion: true $p \le 0.04$ with 90% confidence
- There is less than 10% chance that a p > 10% can produce this outcome (type 2 error)

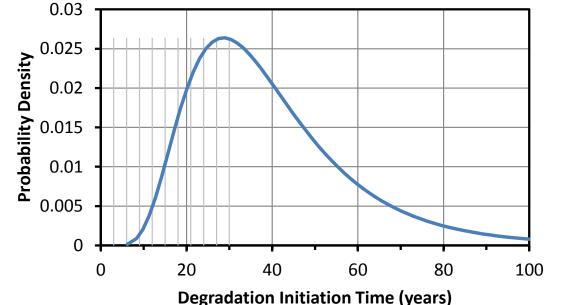
• Take n = 29 and if $k \leq 2$

- true $p \le 0.04$ with 80% confidence
- There is a less than 30% probability that p > 10%
- Sample size is inversely related to magnitudes of statistical errors

Remarks

- Hypothesis Testing is the standard statistical approach to sample size determination
 - Used in environmental standards
- The main drawback: a large sample size is required for high confidence and low Type 2 error
 - Sample size is in hundred, unless higher statistical errors are tolerated
- For some critical reactor components, these sample sizes may be impractical
 - Bayesian methods are better suited to address this problem

Inspection for Degradation Management


- The concern is about limiting the extent of degradation in a large population of components
 - The reactor core with 380-480 fuel channels and feeder outlet pipes
 - Steam Generator tubes in thousands
- Inspection frequency determines how quickly the entire population can be inspected
 - Small sample size means a longer time horizon for completing the inspection
 - A larger proportion of degraded components can be hidden in the population

Lifetime Distribution

 Lifetime is defined by the requirement of the probabilistic assessment

- Ex: the distribution of time to initiation of the degradation (i.e., degradation free lifetime) a generic output
- Ex: mean lifetime is 40 years (COV=0.4), Weibull distribution

University of

Vaterloo

Probabilistic Approach

- Suppose *m* inspections are planned in a time interval (t_1, t_2) . The sample size is *n* per outage
 - In any *ith* outage, defectives are discovered and replaced from the inspected sample of *n*
 - Expected replacements are determined using the lifetime distribution
 - Defectives remaining in the population comes from
 - 1. the uninspected part of population,
 - 2. previously inspected and not replaced components
 - Different sub-populations of these defectives are tracked for all outage intervals
 - To compute the number of defectives remaining in the population in any given year

Example

- Component population = 480
- Sample size 48 component per outage
- In 10 outages (30 years), the core will be fully inspected
- Degraded components found during inspection are replaced
 - Replaced components are free from this degradation
 - Components not replaced after inspection are still susceptible to degradation

Results: No inspection

- Without an inspection program, the cumulative number of defectives grows over time
 - A case of widespread degradation in late life
 - Flow accelerated corrosion in pipes



Results: With Inspection

Defective population is reduced over time

- Sample size 48 per outage, 10 inspection in 30 years
- Initial inspections are not useful in removing defectives
 - Sample size is not large enough to control late life degradation

Results: Delayed Start

Inspection program starts at 12 years

- Sample size is increased to 68 to cover the population
- More effective in reducing the defectives
 - Late life inspections are more useful



Partial Inspection

Inspection program starts at 12 years

- Sample size is fixed at 30 (for practical reasons)
 - It means 56% population will not be inspected at all
- The effectiveness of the plan is reduced



Example - 2

Case of low incidence of degradation

- Mean lifetime 65 years (COV=0.4)
- Full core inspection starting year 12
 - Sample size = 68 per inspection outage

Example 2 – Partial Inspection

Inspection of 30 components starting year 12

- It means 210 components inspected in 7 outages
- The effectiveness of this program is quite limited

Remarks

- An inspection strategy needs to recognize its impact over the entire service life of the population
 - Arbitrary selection of sample size and frequency may not be useful at all
- Effectiveness of inspection strategy depends on the nature of degradation mechanism
 - Use of an "uncalibrated" sample size may be meaningless from a reliability view point

Summary

- Inspection rules must be complementary to the probabilistic assessment
 - demonstrate that the spread of degradation is below a safety/reliability threshold
- Inspection/maintenance strategies play a key role in the success of a degradation management program
 - Information provided by probabilistic assessment must be used to guide the inspections

Summary

- Statistical hypothesis test can be used to determine the inspection sample size
 - Sample can be quite large if high confidence results (80% - 90%) are sought
 - To reduce the sample size, there should be a tolerance for higher statistical errors (25 – 40%)
 - This is a challenging aspect of verifying the prediction of a probabilistic assessment

Summary

Degradation management

- Inspection program should be in tune with the lifetime distribution obtained from the assessment
- The remaining defectives in the population depend on sample size and inspection frequency
- Small sample size and long inspection cycles are not effective
- The efficiency of inspection depends on the rate of spread of degradation with time.
 - Rapid degradation can be contained by aggressive inspections
 - Rare form degradation require more inspection efforts

