

# Efficient probabilistic methods for leak-before-break analysis

Klaus Heckmann, Jürgen Sievers, GRS 2nd International Seminar on Probabilistic Methodologies for Nuclear Applications Ottawa, Ontario, Canada, October 25–26, 2017



PROST PRObabilistic STructure analysis

Theory

- Probabilistic structure analysis and LBB: The transition concept
- Efficient probabilistic methods for LBB

Application

- Break preclusion and break probability
- Comparison of LBB assessment methods
- Uncertainties in probabilistic LBB



## **Outline: Background**

Background

- LBB in the new German safety standard KTA 3206
- Probabilistic structure analysis code PROST



Theory

- Probabilistic structure analysis and LBB: The transition concept
- Efficient probabilistic methods for LBB

Application

- Break preclusion and break probability
- Comparison of LBB assessment methods
- Uncertainties in probabilistic LBB



# LBB in new German standard KTA 3206 (& comparison with US)





#### The PROST code

- Structure analysis of (flawed) pipes and vessels
- Loading and load-time-function
  - Complex operation cycles
  - Accident load events
- Damage
  - Fatigue, corrosion, ductile tearing
- Fracture mechanics
  - Flaw assessment
  - Crack growth analysis
- Leakage
  - Leak rate models
  - Leak-before-break
- Deterministic/probabilistic use
- Application of technical standards

- Graphical user interface
- Documentation
- Validation
- Developed by GRS
- Used by

PROST

- GRS
- External Institutions

| Control Structure Crack Star              | ges 🥔 Damage Mechanism 🜲 Load History 🔍 Inspectio          | ns 💧 Leaks 🗾 Calculation |  |
|-------------------------------------------|------------------------------------------------------------|--------------------------|--|
| .eak Rate                                 |                                                            |                          |  |
| Leak Rate Calculation                     |                                                            |                          |  |
| Leak Area Model: KTA 3206 👻               | Leak Rate Model: Modified Bernoulli 👻 Leak Size: Parameter | r 💌                      |  |
| 25                                        | Relative Size s/c redistributed s/c                        |                          |  |
| 2c                                        |                                                            |                          |  |
| Inlet Pressure Loss                       | Frictional Pressure Loss                                   |                          |  |
| Inlet Head                                | ✓ Roughness & Curve                                        | -                        |  |
| Inlet Head Loss 🕻 🙀 constant 0.5          | Roughness R_z [µm] 🙀 constant 10.0 🕖                       |                          |  |
|                                           | Friction Curve: KTA3206                                    | •                        |  |
|                                           |                                                            |                          |  |
| eak Detection                             |                                                            |                          |  |
| V Detect Leaks                            |                                                            |                          |  |
| Leak Detection Mode: delay                | Detection Delay [years] constant 0.0056                    |                          |  |
| Leak Detection ProbabilityThreshold const | tant 0.1                                                   |                          |  |
|                                           |                                                            |                          |  |
|                                           |                                                            |                          |  |
|                                           |                                                            |                          |  |



#### **Outline: Theory**

Background

- LBB in the new German safety standard KTA 3206
- Probabilistic structure analysis code PROST



#### Theory

- Probabilistic structure analysis and LBB: The transition concept
- Efficient probabilistic methods for LBB

#### Application

- Break preclusion and break probability
- Comparison of LBB assessment methods
- Uncertainties in probabilistic LBB



# The transition concept

Qualitative structure integrity diagram

- Static situation
- Time-dependent problems
- Multiple failure modes
- Leak-before-break analysis





Efficient Probabilistics for LBB



#### **Efficient probabilistic techniques**

The efficiency and reliability of a sampling technique depends on the investigated problem.

Which method is suitable for determination of leak/break probability in nuclear piping?

#### Challenges

- Very low probabilities
  - $p_{break} \approx 10^{-8}$
- High parameter dimension
  - dim = ca. 10
- Time-dependent probability
  - Annual failure during e.g. 40 years operation
- Multiple failure modes / transitions / limit state functions
  - Crack formation, crack initiation/growth, leak, detection, break

#### **Sampling techniques**

- Monte Carlo Simulation
- Quasi Monte Carlo Simulation
- Equidistant Stratification
- First-Order Reliability (FORM)
- Spherical Sampling
- FORM-based Importance Sampling
- Vegas

# **Graphical comparison of sampling techniques**

Illustrative 2-d Example (from NURBIM Fatigue benchmark\*, simplified)

- Small pipe (t=11.1 mm), manufacturing cracks
- Fatigue crack growth  $(2 \cdot 10^4 \text{ cycles in } 40 \text{ years})$
- Distributed initial crack size: depth a, aspect ratio c/a

Comparison of found failures after 10<sup>4</sup> evaluations

18 3 15 2 Parameter 12 u(c<sub>0</sub>/a<sub>0</sub>) Space (x-space) -1 6 -2 -3 3 -4 0 1 -2 -1 3 0 2 6 8 .3 0 2 4 a<sub>0</sub> [mm]  $u(a_0)$ **Cumulative** Ståndard F Distribution Normal Φ **Function** Distribution

2 representations, connected by variable transformations

\*NURBIM: Nuclear Risk Based Inspection Methodology for Passive Components, EC Project, 2004

GRS

#### **Simple Monte Carlo Simulation**



(Pseudo-)Random generation of parameter sets

Evaluation of 10<sup>4</sup> parameter sets: 29 leaks found  $\rightarrow$  Leak probability =  $\frac{29}{10^4}$  = 0.29 %



#### **Quasi Monte Carlo Simulation**



Evaluation of 10<sup>4</sup> parameter sets: 28 leaks found  $\rightarrow$  Leak probability =  $\frac{28}{10^4}$  = 0.28 %



## **Equidistant stratification**





#### First-Order Reliability Method (FORM)



Evaluation of 10<sup>4</sup> parameter sets: Leak probability =  $\int_{beyond line} \Phi(u) d^2u = 0.35 \%$ 



# **Spherical Sampling**





#### Importance Sampling (based on design point)





#### Vegas

Iterative adaption of sampling regions, Used in particle physics (scattering amplitudes, ...), Proposed 1978 by P. LePage, improved in 2005 by T. Hahn First application of Vegas to the structural reliability problem





# Efficiency





# Efficiency

Recommended sampling technique mainly depends on two quantities

- Failure probability
- Number of distributed parameters





# **Outline: Application**

Background

- LBB in the new German safety standard KTA 3206
- Probabilistic structure analysis code PROST



Theory

- Probabilistic structure analysis and LBB: The transition concept
- Efficient probabilistic methods for LBB

Application

- Break preclusion and break probability
- Comparison of LBB assessment methods
- Uncertainties in probabilistic LBB



# Break preclusion and break probability

Open questions:

- How can a successful deterministic verification be translated into a probability?
- Is it in agreement with operational experience?

Method of answer:

Probabilistic fracture mechanics!

Two examples (from standard)

- DN 250, Stainless Steel,
  BWR fresh water line
- DN850, Ferritic Steel, ~PWR main coolant line
- 11 distributed parameters
- FORM-based Importance Sampling







# LBB probabilities computed with PROST



Reference for further reading: KH+JS et al., 41st MPA-Seminar, Stuttgart, 2015

GRS

## **Comparison of LBB methods**

Typical LBB Trend

- Large diameter piping:
  - Generic LBB behavior
- Medium diameter piping
  - LBB challenging
- Small diameter piping:
  - No LBB behavior

Comparison of leak modeling in probabilistic LBB assessment

Bhindiraman, Blom, SMiRT-23 (2015)

| Simulation | Rupture<br>Probability | RelIndex $oldsymbol{eta}$ |
|------------|------------------------|---------------------------|
| Original   | 1E-8                   | 5.6                       |
| PROST      | 3E-43                  | 13.7                      |

Additional influence factors:

- Detection threshold
- Assessment method
  KTA 3206



Reference for further reading: KH+JS, "Leak-Before-Break Analyses of PWR and BWR Piping Concerning Size Effects", submitted to Nucl. Eng. Des.



#### Sensitivity analysis (total probability after 40 years)





# **Uncertainties in probabilistic LBB**

Components with high reliability

- Verly low failure probabilities
- Contributions from the tails of the distribution functions
- Epistemic uncertainties

Variating initial flaw size distributions

Total probabilities

• ?

- Promising
  - Conditional probabilities
  - Operational experience



Efficient Probabilistics for LBB



#### Summary and outlook

- New LBB method in German safety standard KTA 3206
- Probabilistic LBB: transition concept
- High reliability + many distributed parameters: efficient algorithms (like VEGAS)
- Break preclusion = high reliabilities
- Traditional LBB methods too conservative in some situations
- Epistemic uncertainties: Look at conditional probabilities?