Canadian Nuclear Commission canadienne Safety Commission de sûreté nucléaire

APPLICATIONS OF PROBABILISTIC FRACTURE MECHANICS FOR PRESSURE TUBES WITH FLAWS

Bogdan Wasiluk, Konstantinos Tsembelis and John Jin

2nd International Seminar on Probabilistic Methodologies for Nuclear Applications October 25, 2017

Outline

- Introductory information
- Probabilistic evaluations of CANDU reactor core, and probabilistic methodologies
- Efforts to increase confidence in probabilistic evaluations using probabilistic fracture mechanics
- Proposed path forward engaging international experts under working group
- Concluding remarks

Fuel Channels in a CANDU Reactor

- A CANDU reactor has a channelized core with a large number of small diameter coldworked Zr-2.5Nb pressure tubes
- Pressure tubes experience service-induced degradations and material property changes over operating time

Inspection Program and Fitness-for-Service

- Canadian licensees follow Clause 12 of CSA Standard N285.4, *Periodic Inspection of CANDU Power Plant Components*
- When inspection findings do not meet acceptance criteria (in CSA N285.4), operators use CSA Standard N285.8, Technical Requirements for In-Service Evaluation of Zirconium Alloy Pressure Tubes in CANDU Reactors, to demonstrate continued fitness-for-service

Degradation Mechanisms Related to Volumetric Flaws

- Major service-induced pressure tube degradation mechanisms related to volumetric flaws include:
 - debris fretting flaws, which are created when foreign materials are trapped between a fuel bundle and the pressure tube; they are mostly developed at the beginning of reactor operation
 - bearing pad fretting flaws due to fretting between the fuel bundle and pressure tube
 - crevice corrosion flaws related to localized corrosion affected by lithium

Evaluation of Inspection Findings

- Continued fitness-for-service of inspected pressure tubes with volumetric flaws is demonstrated on a deterministic basis
 - Methodologies typically involve but are not limited to demonstration of acceptable margins to crack initiation from a volumetric flaw by two of three known crack initiation mechanisms: delayed hydride cracking (DHC) and fatigue
 - deterministic methodology for hydrided region overload (HROL) is under development
- Followed by the evaluations for entire reactor core

Evaluations for Reactor Core Related to Flaws

- Clause 7 of CSA N285.8-15 requires the following flaw-related evaluations for the reactor core
 - evaluation of in-service conditions for protection against fracture
 - assessment of degradation mechanisms related to flaws
 - evaluation of leak-before-break (LBB)
 - Either probabilistic or deterministic approaches are allowed by the standard

Major Components of Probabilistic Core Evaluation

- Postulation of degradation mechanisms related to flaws over the evaluation period
- Evaluation of crack initiation from DHC, fatigue, and HROL
- Increase in size of the crack growing by DHC
- Leak detection, sequence of events from reactor shutdown to a cold and depressurized state
- Best estimate of pressure tube failure frequency per year

Proposed Allowable Frequencies of Failure

- Establishing risk-informed rather than risk-based allowable failure frequencies
- while reactor safety features are redundant and credited, higher failure frequencies can satisfy risk criteria based on probabilistic safety goals
- Proposed allowable frequencies of Table C.1 of CSA N285.8-15 amendment are limited by class of the event (i.e., design basis accident)

Maximum allowable failure frequency from all degradation mechanisms (H _{all-ig})				
Number of known in-service pressure tube degradation mechanisms, g				
g = 1	g = 2	g = 3	g = 4	g = 5
0.01000	0.00500	0.00333	0.00250	0.00200

e-Doc 5338243

2nd International Seminar on Probabilistic Methodologies for Nuclear Applications , October 25, 2017 - 9

Probabilistic Leak-Before-Break

- Probabilistic leak-before-break (PLBB) methodologies used by Canadian nuclear industry
 - method 1 PLBB based on evaluation of the limiting pressure tube in reactor core with sequentially postulated through-wall cracks (TWCs)
 - method 2 PLBB based on integrated probabilistic core evaluation of crack initiation and LBB

Industry-Proposed Acceptance Criteria for PLBB

- PLBB is demonstrated if the conditional probability of pressure tube rupture given a TWC is less than
 - 0.10 for the limiting pressure tube in reactor core (i.e., Method 1 PLBB)
 - 0.05 for entire reactor core (i.e., Method 2 PLBB)

Arguments for Industry-Proposed PLBB Acceptance Criteria

 Proposed acceptance criteria consider recent estimates of frequency of through-wall cracks (F_{TWC})

$$P(Failure|TWC) \times F_{TWC} \le H_{all-ig}$$

- Procedures in response to a leaking pressure tube event are established and in place
- Pressure tube leak detection capabilities should be adequate for frequency of through-wall cracks

Probabilistic Fracture Protection

- Probabilistic fracture protection methodology developed by the Canadian nuclear industry is under review by the CNSC
 - methodology involves probabilistic evaluation of reactor core
 - industry-proposed acceptance criteria are intended to meet the intent of the design basis for CANDU pressure tubes

Uncertainty Analysis

- Proposed Annex G for CSA N285.8-15 amendment was developed to provide the requirements for treatment of uncertainties
 - triggered when the estimate is higher than half of the acceptance criterion
 - Uncertainty analysis has yet to be completed for any probabilistic evaluations for pressure tubes

Quality Assurance for Computer Codes

- Implementation of the reactor-core based probabilistic
 methodologies into computer programs result in complex
 codes and extensive programming efforts
- The requirements for computer codes outlined in CSA N286.7 should be satisfied
- Benchmarking of the computer codes used for probabilistic evaluations of the reactor core is challenging
 - limited number of qualified computer codes and users
 - limited international cooperation in this area

e-Doc 5338243

2nd International Seminar on Probabilistic Methodologies for Nuclear Applications , October 25, 2017 - 15

Numerical Convergence of Simulations

- Simulation time can be considerable, despite recent substantial improvements in the computational power of professional computers
- Ongoing activities to develop the criteria for numerical convergence of Monte Carlo simulations
 - requirement for a minimum number of simulations
 - limit the number of simulations when the best estimate is distant from the acceptance criterion

Reporting and Verification

- Detailed reporting requirements for probabilistic evaluations should be established
 - level of reporting details for evaluations varies
- Improved confidence would be obtained through the development of best practices, including reporting requirements
- CNSC performs regulatory compliance inspections for additional review of important inputs and assumptions

Validation Challenges

- Challenges in validation of probabilistic methodologies and computer codes for pressure tubes
 - low frequency of pressure tube failures in Canada
 - limited information available for any events that occurred abroad
- Common approaches for validation of probabilistic methodologies should be developed
 - considerable efforts required

Guidelines on Best Practices

- Probabilistic evaluations utilizing probabilistic fracture mechanics have many common features
- Best practices for assessments involving probabilistic fracture mechanics evaluations should be established
 - beneficial for the regulators and the nuclear industry
 - sharing experience is desired

Statistically-Based Models

- Assumption is made that statistically-fitted experimental data from laboratory tests conservatively bounds operating pressure tubes; or, at least, the test conditions were a realistic simulation of operating conditions
- Mechanistic understanding of physical phenomena is required to increase confidence in statistical models while reducing model form uncertainty

Surveillance and Testing Programs

- Probabilistic evaluations for pressure tubes involve many distributed inputs projected into the future
 - The limited amount of available experimental data raises concerns over the accuracy of model predictions and the confidence associated with estimates
 - The ability to obtain additional experimental data is limited because it relies on the removal of a small sample of surveillance pressure tubes, artificial aging of material, and limited testing facilities

Common Challenges and Path Forward

- Probabilistic methodologies using fracture mechanics
 recently find more applications in licensing frameworks
 - Probabilistic methodologies utilizing fracture mechanics have many common features regardless of specific applications
 - An international working group on probabilistic methodologies using probabilistic fracture mechanics should be created to exchange information and develop common approaches

Concluding Remarks

- Validation of assumptions, probabilistic models and probabilistic methodologies require considerable effort
- To validate models and assumptions, choosing the appropriate frequency of surveillance, testing and inspection activities is critical
 - Uncertainty and sensitivity analysis performed for newly introduced probabilistic methodologies are necessary to provide supporting arguments and confidence for their licensing applications

e-Doc 5338243

2nd International Seminar on Probabilistic Methodologies for Nuclear Applications , October 25, 2017 - 23

Concluding Remarks (cont'd)

- Establishing risk-informed rather than risk-based acceptance criteria requires considerable effort
- Guidelines for best practices for probabilistic methodologies and evaluations involving probabilistic fracture mechanics, as well as probabilistic computer code validation, should be internationally supported
 - increase confidence in the estimates from probabilistic evaluations
- An international working group should be established

Acknowledgements

 We would like to acknowledge our OEAD colleagues, particularly Blair Carroll, Sankar Laxman and Glen McDougall, for contributing to the advancements of probabilistic methodologies in licensing applications in Canada

Thank you!

Any questions are welcomed!

e-Doc 5338243

2nd International Seminar on Probabilistic Methodologies for Nuclear Applications , October 25, 2017 - 26

View us on YouTube

Subscribe to updates

Follow us on Twitter

Contact us

