

PROBABILISTIC APPROACH FOR PRESSURISED THERMAL SHOCK (PTS) ANALYSIS

Francesco Paolo Ricci

CS Nuclear Compliance & Projects

ISPMNA Tokyo | October 2024 (EU DuC = N)

• Introduction

● PTS Project

● PETO Code

● Conclusions

ISPMNA Tokyo | October 2024 (EU DuC = N)

Introduction

NRG (Nuclear Research and Consultancy Group)

High Flux Reactor (HFR):

- Radioactive isotopes production
- Nuclear research
- Technical support services

Asset Integrity Team:

- Consultancy services
- Long Term Operation
- TMA
- Research

NRG (Nuclear Research and Consultancy Group)

PTS = Pressurised Thermal Shock

During overcooling events structures are under stress because of thermal gradients.

The stress is enhanced by, sometimes, re-pressurisation of the Reactor Pressure Vessel (RPV).

RPV structure can be weakened by the presence of cracks or due to radiation embrittlement.

PTS Project

ISPMNA Tokyo | October 2024 (EU DuC = N) 3

PETO

Input Module

- **Geometry definition**
- **Material Properties**
- **T-H transient input**
- **Crack type**
- **Chemical composition**
- **N Monte Carlo**
- **Fast Neutron flux**

T-H Module

$$
T(r_j, t_{i+1}) = \frac{\lambda \Delta t}{\Delta r^2} \Big[T(r_{j+1}, t_i) + T(r_{j-1}, t_i) - 2T(r_j, t_i) \Big] + \frac{\lambda \Delta t}{2r_j \Delta r} \Big[T(r_{j+1}, t_i) - T(r_{j-1}, t_i) \Big] + T(r_j, t_i)
$$

Fourier's Law solved with time-forward spacecentred finite difference method

- **RPV approximated as closed cylinder with hemispheric heads (Mariotte's relation)**
- **Pressure stress assumed constant during the transient**

$$
\sigma_{rr} \simeq -\frac{P}{2} \qquad \sigma_{zz} = p\frac{R}{2h} \qquad \sigma_{\theta\theta} = P\frac{R}{h}
$$

Stress Module

- **Plain Strain**
- **Stress components are derived by Noda et al.**

1 by Noda et al.

$$
\sigma_{rr} = \frac{\alpha E}{1-\nu} \left[-\frac{1}{r^2} \int_a^r \tau r dr + \frac{r^2 - a^2}{r^2 (b^2 - a^2)} \int_a^b \tau r dr \right]
$$

$$
\sigma_{\theta\theta} = \frac{\alpha E}{1-\nu} \left[-\frac{1}{r^2} \int_a^r \tau r dr + \frac{r^2 - a^2}{r^2 (b^2 - a^2)} \int_a^b \tau r dr - \tau \right]
$$

$$
\sigma_{zz} = \frac{\alpha E}{1-\nu} \left[\frac{2\nu}{b^2 - a^2} \int_a^r \tau r dr - \tau \right] \quad \text{for} \quad \epsilon_{zz} = \epsilon_0
$$

Stress Module

- **Plain Strain**
- **Stress components are derived by Noda et al.**

$$
\sigma_{rr} = \frac{\alpha E}{1 - \nu} \left[-\frac{1}{r^2} \int_a^r \tau r dr + \frac{r^2 - a^2}{r^2 (b^2 - a^2)} \int_a^b \tau r dr \right]
$$

$$
\sigma_{\theta\theta} = \frac{\alpha E}{1 - \nu} \left[-\frac{1}{r^2} \int_a^r \tau r dr + \frac{r^2 - a^2}{r^2 (b^2 - a^2)} \int_a^b \tau r dr - \tau \right]
$$

$$
\sigma_{zz} = \frac{\alpha E}{1 - \nu} \left[\frac{2\nu}{b^2 - a^2} \int_a^r \tau r dr - \tau \right] \quad \text{for} \quad \epsilon_{zz} = \epsilon_0
$$

SP Noda et al.

Total stresses of the stress Radial Hoop Axial $\frac{2-a^2}{b^2-a^2}$ $\int_a^b \tau r dr$
 $\frac{2-a^2}{b^2-a^2}$ $\int_a^b \tau r dr - \tau$ 0 2000 4000 6000 8000 10000 0 Time [s]

The intensity factor is obtained by using the relations reported on the British R6 code

$$
K_i = \sqrt{\pi a} \sum_{i=0}^{3} \sigma_i f_i\left(\frac{a}{t}, \frac{2c}{a}, \frac{R_i}{t}\right)
$$

$$
K_i = \sqrt{\pi a} \sum_{i=0} \sigma_i f_i
$$

$$
\sigma = \sigma(u) = \sum_{i=0}^{3} \sigma_i \left(\frac{u}{a}\right)^i
$$

Presentation title | Month xx, 2022 ISPMNA Tokyo | October 2024 (EU DuC = N) 10

Material properties are randomly sampled for each Monte Carlo simulation from the material properties in the input module

Presentation title | Month xx, 2022 ISPMNA Tokyo | October 2024 (EU DuC = N) 11

$$
R\tilde{T}_{NDT} = RT_{NDT_0} - \Delta R\tilde{T}_{epistemic} + \Delta R\tilde{T}_{NDT}
$$

- RTNDT0: Unirradiated Reference **Temperature**
- **ΔRT_{NDT}**: Reference Temperature Shift
- **ΔRT**_{epi}: Material variability uncertainties
- Lower RT_{NDT} values are safer because the **metal is ductile at room temperature**

Master curve method

Fracture-thoughness data from Charpy-V tests

Fracture-thoughne
Fracture-thoughne
function of $\Delta T_{\rm relat}$ Fracture-thoughness Weibull distribution as a function of $\Delta T_{relative}$.

CPI: Conditional Probability of Crack Initiation

To calcualte CPI two LEFM principles are used:

• $K_i > K_{ic}$ then **CPI**>0. \boldsymbol{L}

•
$$
\frac{R_i}{dt}
$$
 < 0, then CPI = 0

The highest value **CPI** value obtaiend during each simualtion is extracted and stored

All the **CPI** values stored are then used to get the mean value as final result

NRC RG1.154 set a first PTS acceptable failure risk less than 5[⋅]10^{−6} vessel/year

- **Implement crack propagation model**
- **Improve material properties**
- **Differentiate Ki calcualtion methods**
- **Validation with CFD software**
- **Improve the embrittlement model**
- **Embed PETO with Ansys**

Thank you for your attention.